ddf &

distributed data framework

Distributed Data Framework
Architecture

Version 2.26.17. Copyright (c¢) Codice Foundation

Table of Contents

License
1. Catalog Framework API
2. Catalog API Design
2.1. Ensuring Compatibility
2.2. Catalog Framework Sequence Diagrams
2.2.1. Error Handling
2.2.2. Query
2.2.3. Product Caching
2.2.4. Product Download Status
2.2.5. Catalog API
2.2.5.1. Catalog API Search Interfaces
2.2.5.2. Catalog Search Result Objects
2.2.5.3. Search Programmatic Flow
2.2.5.4. Sort Policies
2.2.5.5. Product Retrieval
2.2.5.6. Notifications and Activities
2.3. Included Catalog Frameworks, Associated Components, and Configurations
2.3.1. Standard Catalog Framework
2.3.1.1. Installing the Standard Catalog Framework
2.3.1.2. Configuring the Standard Catalog Framework
2.3.1.3. Known Issues with Standard Catalog Framework
2.3.2. Catalog Framework Camel Component
2.3.2.1. Sending Messages to Catalog Framework Endpoint
3. Transformers
3.1. Available Input Transformers
3.2. Available Metacard Transformers
3.3. Available Query Response Transformers
3.4. Transformers Details
3.4.1. Atom Query Response Transformer
3.4.1.1. Installing the Atom Query Response Transformer
3.4.1.2. Configuring the Atom Query Response Transformer
3.4.1.3. Using the Atom Query Response Transformer
3.4.2. CSW Query Response Transformer
3.4.2.1. Installing the CSW Query Response Transformer
3.4.2.2. Configuring the CSW Query Response Transformer
3.4.3. Geo]JSON Input Transformer

© 00 0 J N 9 9 o oy ok N e

1N T N T N T N S O o g g S Y
N N N N L = S B VC I "R N NC S i o I = R =

3.4.3.1. Installing the GeoJSON Input Transformer
3.4.3.2. Configuring the GeoJSON Input Transformer
3.4.3.3. Using the GeoJSON Input Transformer
3.4.3.4. Conversion to a Metacard
3.4.3.4.1. Metacard Extensibility
3.4.3.5. Usage Limitations of the GeoJSON Input Transformer
3.4.4. Geo]SON Metacard Transformer
3.4.4.1. Installing the GeoJSON Metacard Transformer
3.4.4.2. Configuring the GeoJSON Metacard Transformer
3.4.4.3. Using the GeoJSON Metacard Transformer
3.4.5. Geo]JSON Query Response Transformer
3.4.5.1. Installing the GeoJSON Query Response Transformer
3.4.5.2. Configuring the GeoJSON Query Response Transformer
3.4.6. KML Metacard Transformer
3.4.6.1. Installing the KML Metacard Transformer
3.4.6.2. Configuring the KML Metacard Transformer
3.4.6.3. Using the KML Metacard Transformer
3.4.7. KML Query Response Transformer
3.4.7.1. Installing the KML Query Response Transformer
3.4.7.2. Configuring the KML Query Response Transformer
3.4.7.3. Using the KML Query Response Transformer
3.4.8. KML Style Mapper
3.4.8.1. Installing the KML Style Mapper
3.4.8.2. Configuring the KML Style Mapper
3.4.9. Metadata Metacard Transformer
3.4.9.1. Installing the Metadata Metacard Transformer
3.4.9.2. Configuring the Metadata Metacard Transformer
3.4.9.3. Using the Metadata Metacard Transformer
3.4.10. PDF Input Transformer
3.4.10.1. Installing the PDF Input Transformer
3.4.10.2. Configuring the PDF Input Transformer
3.4.11. PPTX Input Transformer
3.4.11.1. Installing the PPTX Input Transformer
3.4.11.2. Configuring the PPTX Input Transformer
3.4.12. Query Response Transformer Consumer
3.4.12.1. Installing the Query Response Transformer Consumer
3.4.12.2. Configuring the Query Response Transformer Consumer

3.4.13. Resource Metacard Transformer

21
21
21
21
22
23
23
24
24
24
25
25
26
26
26
26
26
29
29
29
29
32
33
33
35
35
35
35
35
36
36
36
36
36
36
37
37
37

3.4.13.1. Installing the Resource Metacard Transformer
3.4.13.2. Configuring the Resource Metacard Transformer
3.4.13.3. Using the Resource Metacard Transformer
3.4.14. Thumbnail Metacard Transformer
3.4.14.1. Installing the Thumbnail Metacard Transformer
3.4.14.2. Configuring the Thumbnail Metacard Transformer
3.4.14.3. Using the Thumbnail Metacard Transformer
3.4.15. Tika Input Transformer
3.4.15.1. Installing the Tika Input Transformer
3.4.15.2. Configuring the Tika Input Transformer
3.4.16. Video Input Transformer
3.4.16.1. Installing the Video Input Transformer
3.4.16.2. Configuring the Video Input Transformer
3.4.17. XML Input Transformer
3.4.17.1. Installing the XML Input Transformer
3.4.17.2. Configuring the XML Input Transformer
3.4.18. XML Metacard Transformer
3.4.18.1. Installing the XML Metacard Transformer
3.4.18.2. Configuring the XML Metacard Transformer
3.4.18.3. Using the XML Metacard Transformer
3.4.19. XML Query Response Transformer
3.4.19.1. Installing the XML Query Response Transformer
3.4.19.2. Configuring the XML Query Response Transformer
3.4.19.3. Using the XML Query Response Transformer

3.5. Mime Type Mapper

3.5.1. DDF Mime Type Mapper
3.5.1.1. Installing the DDF Mime Type Mapper
3.5.1.2. Configuring DDF Mime Type Mapper

3.6. Mime Type Resolver

3.6.1. Custom Mime Type Resolver
3.6.1.1. Installing the Custom Mime Type Resolver
3.6.1.2. Configuring the Custom Mime Type Resolver
3.6.2. Tika Mime Type Resolver
3.6.2.1. Installing the Tika Mime Type Resolver
3.6.2.2. Configuring the Tika Mime Type Resolver

4. Catalog Plugins
4.1. Types of Plugins

4.1.1. Pre-Authorization Plugins

37
37
37
37
37
37
38
38
38
38
38
39
39
39
39
40
40
40
40
40
41
41
41
41
42
43
43
43
43
44
44
44
44
435
435
435
46
56

4.1.1.1. Available Pre-Authorization Plugins
4.1.2. Policy Plugins

4.1.2.1. Available Policy Plugins
4.1.3. Access Plugins

4.1.3.1. Available Access Plugins
4.1.4. Pre-Ingest Plugins

4.1.4.1. Available Pre-Ingest Plugins
4.1.5. Post-Ingest Plugins

4.1.5.1. Available Post-Ingest Plugins
4.1.6. Post-Process Plugins

4.1.6.1. Available Post-Process Plugins
4.1.7. Pre-Query Plugins

4.1.7.1. Available Pre-Query Plugins
4.1.8. Pre-Federated-Query Plugins

4.1.8.1. Available Pre-Federated-Query Plugins
4.1.9. Post-Query Plugins

4.1.9.1. Available Post-Query Plugins
4.1.10. Post-Federated-Query Plugins

4.1.10.1. Available Post-Federated-Query Plugins

4.1.11. Pre-Resource Plugins

4.1.11.1. Available Pre-Resource Plugins
4.1.12. Post-Resource Plugins

4.1.12.1. Available Post-Resource Plugins
4.1.13. Pre-Create Storage Plugins

4.1.13.1. Available Pre-Create Storage Plugins
4.1.14. Post-Create Storage Plugins

4.1.14.1. Available Post-Create Storage Plugins
4.1.15. Pre-Update Storage Plugins

4.1.15.1. Available Pre-Update Storage Plugins
4.1.16. Post-Update Storage Plugins

4.1.16.1. Available Post-Update Storage Plugins
4.1.17. Pre-Subscription Plugins

4.1.17.1. Available Pre-Subscription Plugins
4.1.18. Pre-Delivery Plugins

4.1.18.1. Available Pre-Delivery Plugins

4.2. Catalog Plugin Details

4.2.1. Catalog Backup Plugin
4.2.1.1. Installing the Catalog Backup Plugin

57
57
57
58
58
58
58
59
59
59
60
60
60
60
60
60
61
61
61
61
62
62
62
62
62
62
62
63
63
63
63
63
63
63
64
64
64
64

4.2.1.2. Configuring the Catalog Backup Plugin
4.2.1.3. Usage Limitations of the Catalog Backup Plugin
4.2.2. Catalog Policy Plugin
4.2.2.1. Installing the Catalog Policy Plugin
4.2.2.2. Configuring the Catalog Policy Plugin
4.2.3. Checksum Plugin
4.2.3.1. Installing the Checksum Plugin
4.2.3.2. Configuring the Checksum Plugin
4.2.4. Client Info Plugin
4.2.4.1. Related Components to the Client Info Plugin
4.2.4.2. Installing the Client Info Plugin
4.2.4.3. Configuring the Client Info Plugin
4.2.5. Content URI Access Plugin
4.2.5.1. Installing the Content URI Access Plugin
4.2.5.2. Configuring the Content URI Access Plugin
4.2.6. Event Processor
4.2.6.1. Installing the Event Processor
4.2.6.2. Configuring the Event Processor
4.2.6.3. Usage Limitations of the Event Processor
4.2.7. Expiration Date Pre-Ingest Plugin
4.2.7.1. Installing the Expiration Date Pre-Ingest Plugin
4.2.7.2. Configuring the Expiration Date Pre-Ingest Plugin
4.2.8. Filter Plugin
4.2.8.1. Installing the Filter Plugin
4.2.8.2. Configuring the Filter Plugin
4.2.9. GeoCoder Plugin
4.2.9.1. Installing the GeoCoder Plugin
4.2.9.2. Configuring the GeoCoder Plugin
4.2.10. Historian Policy Plugin
4.2.10.1. Installing the Historian Policy Plugin
4.2.10.2. Configuring the Historian Policy Plugin
4.2.11. JPEG2000 Thumbnail Converter
4.2.11.1. Installing the JPEG2000 Thumbnail Converter
4.2.11.2. Configuring the JPEG2000 Thumbnail Converter
4.2.12. Metacard Attribute Security Policy Plugin
4.2.12.1. Installing the Metacard Attribute Security Policy Plugin
4.2.13. Metacard Backup File Storage Provider
4.2.13.1. Installing the Metacard Backup File Storage Provider

64
64
65
65
65
65
65
65
65
65
66
66
66
66
66
66
66
66
67
67
67
67
67
69
69
69
69
69
70
70
70
70
70
70
70
71
71
71

4.2.13.2. Configuring the Metacard Backup File Storage Provider
4.2.14. Metacard Backup S3 Storage Provider
4.2.14.1. Installing the Metacard S3 File Storage Provider
4.2.14.2. Configuring the Metacard S3 File Storage Provider
4.2.15. Metacard Groomer
4.2.15.1. Installing the Metacard Groomer
4.2.15.2. Configuring the Metacard Groomer
4.2.16. Metacard Ingest Network Plugin
4.2.16.1. Related Components to the Metacard Ingest Network Plugin
4.2.16.2. Installing the Metacard Ingest Network Plugin
4.2.16.3. Configuring the Metacard Ingest Network Plugin
4.2.16.3.1. Useful Attributes
4.2.16.4. Usage Limitations of the Metacard Ingest Network Plugin
4.2.17. Metacard Resource Size Plugin
4.2.17.1. Installing the Metacard Resource Size Plugin
4.2.17.2. Configuring the Metacard Resource Size Plugin
4.2.18. Metacard Validity Filter Plugin
4.2.18.1. Related Components to the Metacard Validity Filter Plugin
4.2.18.2. Installing the Metacard Validity Filter Plugin
4.2.19. Metacard Validity Marker
4.2.19.1. Related Components to the Metacard Validity Marker
4.2.19.2. Installing Metacard Validity Marker
4.2.19.3. Configuring Metacard Validity Marker
4.2.19.4. Using Metacard Validity Marker
4.2.20. Operation Plugin
4.2.20.1. Installing the Operation Plugin
4.2.20.2. Configuring the Operation Plugin
4.2.21. Point of Contact Policy Plugin
4.2.21.1. Related Components to Point of Contact Policy Plugin
4.2.21.2. Installing the Point of Contact Policy Plugin
4.2.21.3. Configuring the Point of Contact Policy Plugin
4.2.22. Processing Post-Ingest Plugin
4.2.22.1. Related Components to Processing Post-Ingest Plugin
4.2.22.2. Installing the Processing Post-Ingest Plugin
4.2.22.3. Configuring the Processing Post-Ingest Plugin
4.2.23. Resource URI Policy Plugin
4.2.23.1. Installing the Resource URI Policy Plugin
4.2.23.2. Configuring the Resource URI Policy Plugin

71
72
72
72
72
73
73
73
73
73
73
74
75
75
75
75
75
75
75
76
76
76
76
76
76
76
76
77
77
77
77
77
77
77
77
77
78
78

4.2.24. Security Audit Plugin
4.2.24.1. Installing the Security Audit Plugin
4.2.25. Security Logging Plugin
4.2.25.1. Installing Security Logging Plugin
4.2.25.2. Enhancing the Security Log
4.2.26. Security Plugin
4.2.26.1. Installing the Security Plugin
4.2.26.2. Configuring the Security Plugin
4.2.27. Tags Filter Plugin
4.2.27.1. Related Components to Tags Filter Plugin
4.2.27.2. Installing the Tags Filter Plugin
4.2.27.3. Configuring the Tags Filter Plugin
4.2.28. Video Thumbnail Plugin
4.2.28.1. Installing the Video Thumbnail Plugin
4.2.28.2. Configuring the Video Thumbnail Plugin
4.2.29. Workspace Access Plugin
4.2.29.1. Related Components to The Workspace Access Plugin
4.2.29.2. Installing the Workspace Access Plugin
4.2.29.3. Configuring the Workspace Access Plugin
4.2.30. Workspace Pre-Ingest Plugin
4.2.30.1. Related Components to The Workspace Pre-Ingest Plugin
4.2.30.2. Installing the Workspace Pre-Ingest Plugin
4.2.30.3. Configuring the Workspace Pre-Ingest Plugin
4.2.31. Workspace Sharing Policy Plugin
4.2.31.1. Related Components to The Workspace Sharing Policy Plugin
4.2.31.2. Installing the Workspace Sharing Policy Plugin
4.2.31.3. Configuring the Workspace Sharing Policy Plugin
4.2.32. XML Attribute Security Policy Plugin
4.2.32.1. Installing the XML Attribute Security Policy Plugin

5. Data
5.1. Metacards

5.1.1. Metacard Type
5.1.1.1. Default Metacard Type and Attributes
5.1.1.2. Extensible Metacards
5.1.2. Metacard Type Registry
5.1.3. Attributes
5.1.3.1. Attribute Types
5.1.3.1.1. Attribute Format

78
78
78
78
78
79
79
79
79
79
79
79
79
80
80
80
80
80
80
80
81
81
81
81
81
81
81
81
82
82
82
82
83
83
84
85
85
85

5.1.3.1.2. Attribute Naming Conventions 86

5.1.3.2. Result 86

5.1.4. Creating Metacards 86
5.1.4.1. Limitations 87
5.1.4.2. Processing Metacards 87
5.1.4.3. Basic Types 87

6. Operations 88
7. Resources 89
7.1. Content Item 90
7.1.1. Retrieving Resources 90
7.1.1.1. BinaryContent 91

7.1.2. Retrieving Resource Options 91
7.1.3. Storing Resources 92

7.2. Resource Components 92
7.3. Resource Readers 93
7.3.1. URL Resource Reader 93
7.3.1.1. Installing the URL Resource Reader 93
7.3.1.2. Configuring Permissions for the URL Resource Reader 94
7.3.1.3. Configuring the URL Resource Reader 94
7.3.1.4. Using the URL Resource Reader 94

7.4. Resource Writers 95

8. Queries 95
8.1. Filters 95
8.1.1. FilterBuilder API 96
8.1.1.1. Boolean Operators 96
8.1.1.2. Attribute 96

9. Action Framework 97
9.1. Action Providers 97
10. Asynchronous Processing Framework 98
11. Eventing 101
11.1. Eventing Components 102
12. Security Framework 102
12.1. Subject 103
12.1.1. Security Manager 103
12.1.2. Realms 103
12.1.2.1. Authenticating Realms 103
12.1.2.2. Authorizing Realms 104

12.2. Security Core 106

12.2.1. Security Core API
12.2.1.1. Installing the Security Core API
12.2.1.2. Configuring the Security Core API
12.2.2. Security Core Implementation
12.2.2.1. Installing the Security Core Implementation
12.2.2.2. Configuring the Security Core Implementation
12.2.3. Security Core Commons
12.2.3.1. Configuring the Security Core Commons
12.3. Security Encryption
12.3.1. Security Encryption API
12.3.1.1. Installing Security Encryption API
12.3.1.2. Configuring the Security Encryption API
12.3.2. Security Encryption Implementation

12.3.2.1. Installing Security Encryption Implementation

12.3.2.2. Configuring Security Encryption Implementation

12.3.3. Security Encryption Commands
12.3.3.1. Installing the Security Encryption Commands
12.3.3.2. Configuring the Security Encryption Commands
12.4. Security LDAP
12.4.1. Embedded LDAP Server
12.4.1.1. Installing the Embedded LDAP Server
12.4.1.2. Configuring the Embedded LDAP
12.4.1.3. Connecting to Standalone LDAP Servers
12.4.1.4. Embedded LDAP Configuration
12.4.1.5. Schemas
12.4.1.6. Starting and Stopping the Embedded LDAP
12.4.1.7. Limitations of the Embedded LDAP
12.4.1.8. External Links for the Embedded LDAP
12.4.1.9. LDAP Administration
12.4.1.10. Downloading the Admin Tools
12.4.1.11. Using the Admin Tools
12.5. Security PDP
12.5.1. Security PDP AuthZ Realm
12.5.1.1. Configuring the Security PDP AuthZ Realm
12.5.2. Guest Interceptor
12.5.2.1. Installing Guest Interceptor
12.5.2.2. Configuring Guest Interceptor
12.6. Web Service Security Architecture

106
106
106
106
106
106
106
106
106
107
107
107
107
107
107
107
108
108
108
108
108
108
109
109
110
111
112
112
112
112
112
114
114
115
115
115
115
116

12.6.1. Securing REST
12.7. Security PEP
12.7.1. Security PEP Interceptor
12.7.1.1. Installing the Security PEP Interceptor
12.7.1.2. Configuring the Security PEP Interceptor
12.8. Filtering
12.9. Expansion Service
12.10. Federated Identity

116
118
119
119
119
119
120
124

License

Copyright (c) Codice Foundation.
This work is licensed under a Creative Commons Attribution 4.0 International License.

This document last updated: 2021-09-22.

http://creativecommons.org/licenses/by/4.0

Developers will build or extend the functionality of the applications.

DDF includes several extension points where external developers can add functionality to support
individual use cases.

DDF is written in Java and uses many open source libraries. DDF uses OSGi to provide modularity,
lifecycle management, and dynamic services. OSGi services can be installed and uninstalled while DDF
is running. DDF development typically means developing new OSGi bundles and deploying them to the
running DDF. A complete description of OSGi is outside the scope of this documentation. For more

information about OSGi, see the OSGi Alliance website .

Components [New] [New Security] [New]
Catalog Components Components App Components

DDF Applications ! [DDF Catalog] [DDF Security] [New Application]
77777777 [;[;FHHWHHJ DDF Framework ‘ i
_____________________ X includes Apache Karaf, Apache CXF, 3
! Eclipse Equinox OSGi Container !
Jvm [Sun Java DK J
Operating System [Windows] [Linux] [Mac OS X J
Hardware [x86 } [SPARC }

Architecture Diagram
If developing for a Highly Available Cluster of DDF, see High Availability
IMPORTANT

Guidance.

1. Catalog Framework API

http://www.osgi.org
developing.pdf#_high_availability_guidance
developing.pdf#_high_availability_guidance

[Endpoints]
Operations Data o
“« T
Transformers Federation Sources | External
Catalog Framework - Data |
‘ Eventing ‘ i Holdings |
Catalog 4 :
Plugins ‘ Resources J e _-
Catalog Provider
Storage Provider
¢ Legend
[‘-'—__—__ ________________ - __‘___—"l
! ! [DDF Component]
i Data Store |
I L il e e e v
e - _-- ! External Component !
Catalog Architecture
Endpoints
Operations Data
Transformers Federation Sources
Catalog Framework
Eventing
Catalog
Plugins Resources
Catalog Provider
Storage Provider

Catalog Framework Architecture

The CatalogFramework is the routing mechanism between catalog components that provides integration
points for the Catalog Plugins. An endpoint invokes the active Catalog Framework, which calls any

documentation.pdf#_endpoints

configured Pre-query or Pre-ingest plug-ins. The selected federation strategy calls the active Catalog
Provider and any connected or federated sources. Then, any Post-query or Post-ingest plug-ins are
invoked. Finally, the appropriate response is returned to the calling endpoint.

The Catalog Framework wires all Catalog components together.
It is responsible for routing Catalog requests and responses to the appropriate target.

Endpoints send Catalog requests to the Catalog Framework. The Catalog Framework then
invokes Catalog Plugins, Transformers, and Resource Components as needed before sending requests
to the intended destination, such as one or more Sources.

The Catalog Framework decouples clients from service implementations and provides integration
points for Catalog Plugins and convenience methods for Endpoint developers.

2. Catalog API Design

The Catalog is composed of several components and an API that connects them together. The Catalog
API is central to DDF’s architectural qualities of extensibility and flexibility. The Catalog API consists of
Java interfaces that define Catalog functionality and specify interactions between components. These
interfaces provide the ability for components to interact without a dependency on a particular
underlying implementation, thus allowing the possibility of alternate implementations that can
maintain interoperability and share developed components. As such, new capabilities can be
developed independently, in a modular fashion, using the Catalog APIinterfaces and reused by
other DDF installations.

2.1. Ensuring Compatibility

The Catalog API will evolve, but great care is taken to retain backwards compatibility with developed
components. Compatibility is reflected in version numbers.

2.2. Catalog Framework Sequence Diagrams

Because the Catalog Framework plays a central role to Catalog functionality, it interacts with many
different Catalog components. To illustrate these relationships, high-level sequence diagrams with
notional class names are provided below. These examples are for illustrative purposes only and do not
necessarily represent every step in each procedure.

managing.pdf#_federation_strategy
managing.pdf#_catalog_providers
managing.pdf#_catalog_providers
documentation.pdf#_endpoints
managing.pdf#_connecting_to_sources

Client Endpoint atalogFramework CatalogProvider External
Ingest Seml(e Endpoint Slandal d Catalog Framework PrelngestPlugin PostingestPlugin Solr Provider Solr Search Server
| | I
i i

i Web Servicg Ingest Request N
1

'} create(CreateRequest) }
| » | process(CreateRequest)
I
’ I

o CreateRequest

I
! ‘create(CreateRequest)

I
p | create
i

I
|

response
I

I
i

CreateResponse :4
I

a

I
CreateResponse :4
i

i i
i‘Weh Service] Ingest Response | 4
[0

Ingest Request Data Flow

The Ingest Service Endpoint, the Catalog Framework, and the Catalog Provider are key components of
the Reference Implementation. The Endpoint bundle implements a Web service that allows clients to
create, update, and delete metacards. The Endpoint calls the CatalogFramework to execute the operations
of its specification. The C(atalogFramework routes the request through optional Prelngest and
PostIngest Catalog Plugins, which may modify the ingest request/response before/after the Catalog
Provider executes the ingest request and provides the response. Note that a CatalogProvider must be
present for any ingest requests to be successfully processed, otherwise a fault is returned.

This process is similar for wupdating catalog entries, with update requests calling the
update(UpdateRequest) methods on the Endpoint, CatalogFramework, and Catalog Provider. Similarly, for
deletion of catalog entries, the delete requests call the delete(DeleteRequest) methods on the Endpoint,
CatalogFramework, and CatalogProvider.

2.2.1. Error Handling

Any ingest attempts that fail inside the Catalog Framework (whether the failure comes from the
Catalog Framework itself, pre-ingest plugin failures, or issues with the Catalog Provider) will be logged
to a separate log file for ease of error handling. The file 1is located at
<DDF_HOME>/data/log/ingest_error.log and will log the Metacards that fail, their ID and Title name, and
the stack trace associated with their failure. By default, successful ingest attempts are not logged.
However, that functionality can be achieved by setting the log level of the ingestLogger to DEBUG (note
that enabling DEBUG can cause a non-trivial performance hit).

To turn off logging failed ingest attempts into a separate file, execute the following via the
command line console

TIP
log:set
ERROR ingestLogger
2.2.2. Query

Client Endpoint atalogFramework CatalogProvider External
Query Sen/l(e Endpoint Slandal d Catalog Framework PreQueryPlugin PostQueryPlugin Solr Provider Solr Search Server
i i
i

i Web Service|Query Request L
1

query(QueryRequest) |
» | process(QueryRequest) g
I

L]

QueryRequest

I
<
|

‘i query |
>
| R
| response I
QueryResponse i <+
I

I
[

i process(QueryResponse)
i '

»
! QueryResponse'

QueryResponse i +
i

1 I
i‘ Web Service Query Response |4
[0

Query Request Data Flow

The Query Service Endpoint, the Catalog Framework, and the CatalogProvider are key components for
processing a query request as well. The Endpoint bundle contains a Web service that exposes the
interface to query for Metacards. The Endpoint calls the CatalogFramework to execute the operations of
its specification. The CatalogFramework relies on the CatalogProvider to execute the actual query.
Optional PreQuery and PostQuery Catalog Plugins may be invoked by the CatalogFramework to modify
the query request/response prior to the Catalog Provider processing the query request and providing
the query response. If a CatalogProvider is not configured and no other remote Sources are configured,
a fault will be returned. It is possible to have only remote Sources configured and no local
CatalogProvider configured and be able to execute queries to specific remote Sources by specifying the
site name(s) in the query request.

2.2.3. Product Caching

The Catalog Framework optionally provides caching of products, so future requests to retrieve the
same product will be serviced much quicker. If caching is enabled, each time a retrieve product
request is received, the Catalog Framework will look in its cache (default location
<DDF_HOME>/data/product-cache) to see if the product has been cached locally. If it has, the product is
retrieved from the local site and returned to the client, providing a much quicker turnaround because
remote product retrieval and network traffic was avoided. If the requested product is not in the cache,
the product is retrieved from the Source (local or remote) and cached locally while returning the
product to the client. The caching to a local file of the product and the streaming of the product to the
client are done simultaneously so that the client does not have to wait for the caching to complete
before receiving the product. If errors are detected during the caching, caching of the product will be
abandoned, and the product will be returned to the client.

The Catalog Framework attempts to detect any network problems during the product retrieval, e.g.,
long pauses where no bytes are read implying a network connection was dropped. (The amount of
time defined as a "long pause" is configurable, with the default value being five seconds.) The Catalog
Framework will attempt to retrieve the product up to a configurable number of times (default = three),
waiting for a configurable amount of time (default = 10 seconds) between each attempt, trying to
successfully retrieve the product. If the Catalog Framework is unable to retrieve the product, an error
message is returned to the client.

If the admin has enabled the Always Cache When Canceled option, caching of the product will occur

even if the client cancels the product retrieval so that future requests will be serviced quickly.
Otherwise, caching is canceled if the user cancels the product download.

2.2.4. Product Download Status

As part of the caching of products, the Catalog Framework also posts events to the OSGi notification
framework. Information includes when the product download started, whether the download is
retrying or failed (after the number of retrieval attempts configured for product caching has been
exhausted), and when the download completes. These events are retrieved by the Search UI and
presented to the user who initiated the download.

2.2.5. Catalog API

The Catalog API is an OSGi bundle (catalog-core-api) that contains the Java interfaces for
the Catalog components and implementation classes for ~ the Catalog Framework, Operations,
and Data components.

2.2.5.1. Catalog API Search Interfaces

The Catalog API includes two different search interfaces.

Search UI Application Search Interface

The DDF Search UI application provides a graphic interface to return results and locate them on an
interactive globe or map.

SSH Search Interface

Additionally, it is possible to use a client script to remotely access DDF via SSH and send console
commands to search and ingest data.

2.2.5.2. Catalog Search Result Objects

Data is returned from searches as Catalog Search Result objects. This is a subtype of Catalog Entry that
also contains additional data based on what type of sort policy was applied to the search. Because it is
a subtype of Catalog Entry, a Catalog Search Result has all Catalog Entry’s fields such as metadata,
effective time, and modified time. It also contains some of the following fields, depending on type of
search, that are populated by DDF when the search occurs:

Distance

Populated when a point-radius spatial search occurs. Numerical value that indicates the result’s
distance from the center point of the search.

Units

Populated when a point-radius spatial search occurs. Indicates the units (kilometer, mile, etc.) for
the distance field.

Relevance

Populated when a contextual search occurs. Numerical value that indicates how relevant the text in
the result is to the text originally searched for.

2.2.5.3. Search Programmatic Flow

Searching the catalog involves three basic steps:

1. Define the search criteria (contextual, spatial, or temporal).
a. Optionally define a sort policy and assign it to the criteria.

b. For contextual search, optionally set the fuzzy flag to true or false (the default value for the
Metadata Catalog fuzzy flag is true, while the portal default value is false).

c. For contextual search, optionally set the caseSensitive flag to true (the default is that
caseSensitive flag is NOT set and queries are not case sensitive). Doing so enables case sensitive
matching on the search criteria. For example, if caseSensitive is set to true and the phrase is
“Baghdad” then only metadata containing “Baghdad” with the same matching case will be
returned. Words such as “baghdad”, “BAGHDAD?”, and “baghDad” will not be returned because
they do not match the exact case of the search term.

2. Issue a search.

3. Examine the results.

2.2.5.4. Sort Policies

Searches can also be sorted according to various built-in policies. A sort policy is applied to the search
criteria after its creation but before the search is issued. The policy specifies to the DDF the order the
Catalog search results should be in when they are returned to the requesting client. Only one sort
policy may be defined per search.

There are three policies available.

Table 1. Sort Policies

Sort Policy Sorts By Default Order Available for

Temporal The catalog search Newest to oldest All Search Types
result’s effective time
field

Distance The catalog search Nearest to farthest Point-Radius Spatial
result’s distance field searches

Relevance The catalog search Most to least relevant Contextual

result’s relevance field

If no sort policy is defined for a particular search, the temporal policy will automatically be applied.

2.2.5.5. Product Retrieval

The DDF is used to catalog resources. A Resource is a URI-addressable entity that is represented by a

Metacard. Resources may exist either locally or on a remote data store.

Examples of Resources
* NITF image
* MPEG video
* Live video stream
* Audio recording

* Document

Product Retrieval Services

* SOAP Web services
* DDF JSON
 DDF REST

The Query Service Endpoint, the Catalog Framework, and the CatalogProvider are key components for
processing a retrieve resource request. The Endpoint bundle contains a Web service that exposes the
interface to retrieve resources. The Endpoint calls the CatalogFramework to execute the operations of its
specification. The CatalogFramework relies on the Sources to execute the actual resource retrieval.
Optional PreResource and PostResource Catalog Plugins may be invoked by the CatalogFramework to
modify the resource retrieval request/response prior to the Catalog Provider processing the request
and providing the response. It is possible to retrieve resources from specific remote Sources by

specifying the site name(s) in the request.

Product Caching

Product Caching is enabled by default. Existing DDF clients are able to leverage product caching due to

the product cache being implemented in the DDF.

| Service Retrieval
| Request
'

|
" | query(ResourceRequest) | i
I """} process(ResourceRequest) |

ResourceRequest

i
1 getResource |
! » ' download

resource

Client Endpoint CatalogFramework DownloadManager Cache
Service Endpoint Standard Catalog Framework PreResourcePlugin PostResourcePlugin Download Manager Cache

I | I I . .

I i i I I

y! i i I I

I i I i

i I i

I I

External
Resource Host

4
| resource
'

resource

;‘ ResourceResponse
0 i 4

! Web Service I ResourceResponse |

1 Retrieval Respgnse —

v

P
¢

Product Retrieval Request

2.2.5.6. Notifications and Activities

DDF can send/receive notifications of "Activities" occurring in the system.
Currently, the notifications provide information about resource retrieval only.

Activity events include the status and progress of actions that are being performed by the user, such as
searches and downloads.

2.3. Included Catalog Frameworks, Associated
Components, and Configurations

These catalog frameworks are available in a standard DDF installation:

Standard Catalog Framework

Reference implementation of a Catalog Framework that implements all requirements of the Catalog
APIL

Catalog Framework Camel Component

Supports creating, updating, and deleting metacards using the Catalog Framework from a Camel
route.

2.3.1. Standard Catalog Framework

The Standard Catalog Framework provides the reference implementation of a Catalog Framework that
implements all requirements of the Catalog API. CatalogFrameworkImplis the implementation of
the DDF Standard Catalog Framework.

The Standard Catalog Framework is the core class of DDF. It provides the methods for create, update,
delete, and resource retrieval (CRUD) operations on the Sources. By contrast, the Fanout Catalog
Framework only allows for query and resource retrieval operations, no catalog modifications, and all
queries are enterprise-wide.

Use this framework if:

* access to a catalog provider is required to create, update, and delete catalog entries.
* queries to specific sites are required.
* queries to only the local provider are required.

It is possible to have only remote Sources configured with no local CatalogProvider configured and be
able to execute queries to specific remote sources by specifying the site name(s) in the query request.

The Standard Catalog Framework also maintains a list of ResourceReaders for resource retrieval
operations. A resource reader is matched to the scheme (i.e., protocol, such as file://) in the URI of the
resource specified in the request to be retrieved.

10

Site information about the catalog provider and/or any federated source(s) can be retrieved using the
Standard Catalog Framework. Site information includes the source’s name, version, availability, and
the list of unique content types currently stored in the source (e.g., NITF). If no local catalog provider is
configured, the site information returned includes site info for the catalog framework with no content
types included.

2.3.1.1. Installing the Standard Catalog Framework

The Standard Catalog Framework is bundled as the catalog-core-standardframework feature and can be
installed and uninstalled using the normal processes described in Configuration.

2.3.1.2. Configuring the Standard Catalog Framework

These are the configurable properties on the Standard Catalog Framework.
See Catalog Standard Framework configurations for all possible configurations.

Table 2. Standard Catalog Framework Exported Services

Registered Interface Service Value

Property
ddf.catalog.federation.FederationStrategy shortname sorted
org.osgi.service.event.EventHandler event.topics ddf/catalog/event/CREATED,

ddf/catalog/event/UPDATED,
ddf/catalog/event/DELETED

ddf.catalog.CatalogFramework
ddf.catalog.event.EventProcessor
ddf.catalog.plugin.PostIngestPlugin

Table 3. Standard Catalog Framwork Imported Services

Registered Interface Availability Multiple
ddf.catalog.plugin.PostFederatedQueryPlugin optional true
ddf.catalog.plugin.PostIngestPlugin optional true
ddf.catalog.plugin.PostQueryPlugin optional true
ddf.catalog.plugin.PostResourcePlugin optional true
ddf.catalog.plugin.PreDeliveryPlugin optional true
ddf.catalog.plugin.PreFederatedQueryPlugin optional true
ddf.catalog.plugin.PreIngestPlugin optional true
ddf.catalog.plugin.PreQueryPlugin optional true
ddf.catalog.plugin.PreResourcePlugin optional true
ddf.catalog.plugin.PreSubscriptionPlugin optional true
ddf.catalog.plugin.PolicyPlugin optional true

11

reference.pdf#_ddf.catalog.CatalogFrameworkImpl

Registered Interface Availability Multiple

ddf.catalog.plugin.AccessPlugin optional true
ddf.catalog.resource.ResourceReader optional true
ddf.catalog.source.CatalogProvider optional true
ddf.catalog.source.ConnectedSource optional true
ddf.catalog.source.FederatedSource optional true
ddf.cache.CacheManager false
org.osgi.service.event.EventAdmin false

2.3.1.3. Known Issues with Standard Catalog Framework

None.

2.3.2. Catalog Framework Camel Component

The Catalog Framework Camel Component supports creating, updating, and deleting metacards using
the Catalog Framework from a Camel route.

URI Format

catalog: framework

Table 4. Catalog Framework Producer Message Headers
Header Description

operation the operation to perform using the Catalog Framework (possible values are CREATE
| UPDATE | DELETE)

2.3.2.1. Sending Messages to Catalog Framework Endpoint

Catalog Framework Producer

In Producer mode, the component provides the ability to supply different inputs and have the Catalog
Framework perform different operations based upon the header values.

For the CREATE and UPDATE operation, the message body can contain a list of metacards or a single
metacard object.

For the DELETE operation, the message body can contain a list of strings or a single string object. The
string objects represent the IDs of metacards to be deleted. The exchange’s "in" message will be set
with the affected metacards. In the case of a CREATE, it will be updated with the created metacards. In
the case of the UPDATE, it will be updated with the updated metacards and with the DELETE it will
contain the deleted metacards.

Table 5. Catalog Framework Camel Component Operations

12

Header Message Body (Input) Exchange Modification (Output)

operation = CREATE List<Metacard> or Metacard exchange.getIn().getBody() updated with
List of Metacards created

operation = UPDATE List<Metacard> or Metacard exchange.getIn().getBody() updated with
List of Metacards updated

operation = DELETE List<String> or String exchange.getIn().getBody() updated with
(representing metacard IDs) List of Metacards deleted

If there is an exception thrown while the route is being executed, a
NOTE FrameworkProducerException will be thrown causing the route to fail with a

CamelExecutionException.

Example Route

This example demonstrates:

1. Reading in some sample data from the file system.
2. Using a Java bean to convert the data into a metacard.
3. Setting a header value on the Exchange.

4. Sending the Metacard to the Catalog Framework component for ingesting.

<route>
<from uri="file:data/sampleData?noop=true”/>
<bean ref="sampleDataToMetacardConverter" method="covertToMetacard"/>\
<setHeader name="operation">
<constant>CREATE</constant>
</setHeader>
<to uri="catalog:framework"/>
</route>

3. Transformers

13

Endpoints
Operations Data
Federation Sources
Catalog Framework
Eventing
Catalog
Plugins Resources
Catalog Provider
Storage Provider
Transformers

Transformers transform data to and from various formats. Transformers are categorized by when they
are invoked and used. The existing types are Input transformers, Metacard transformers, and Query
Response transformers. Additionally, XSLT transformers are provided to aid in developing custom,
lightweight Metacard and Query Response transformers.

Transformers are utility objects used to transform a set of standard DDF components into a desired
format, such as into PDF, GeoJSON, XML, or any other format. For instance, a transformer can be used
to convert a set of query results into an easy-to-read GeoJSON format (GeoJSON Transformer) or
convert a set of results into a RSS feed that can be easily published to a URL for RSS feed subscription.
Transformers can be registered in the OSGi Service Registry so that any other developer can access
them based on their standard interface and self-assigned identifier, referred to as its "shortname."
Transformers are often used by endpoints for data conversion in a system standard way. Multiple
endpoints can use the same transformer, a different transformer, or their own published transformer.

The current transformers only work for UTF-8 characters and do not support Non-

WARNING Western Characters (for example, Hebrew). It is recommend not to use
international character sets, as they may not be displayed properly.

14

*
DDF¢

Endpoint |4

Catalog Framework

i

[Transformer]

H

Communication Diagram

Transformers are used to alter the format of a resource or its metadata to or from the catalog’s
metacard format.

Types of Transformers
Input Transformers

Input Transformers create metacards from input. Once converted to a Metacard, the data can be
used in a variety of ways, such as in an UpdateRequest, CreateResponse, or within Catalog Endpoints
or Sources. For instance, an input transformer could be used to receive and translate XML into a
Metacard so that it can be placed within a CreateRequest to be ingested within the Catalog. Input
transformers should be registered within the Service Registry with the interface
ddf.catalog.transform.InputTransformer to notify Catalog components of any new transformers.

Metacard Transformers

Metacard Transformers translate a metacard from catalog metadata to a specific data format.

Query Response Transformers

Query Response transformers convert query responses into other data formats.

3.1. Available Input Transformers

The following input transformers are available in a standard installation of DDF:

GeoJSON Input Transformer

Translates GeoJSON into a Catalog metacard.

15

documentation.pdf#_available_input_transformers

PDF Input Transformer

Translates a PDF document into a Catalog Metacard.

PPTX Input Transformer

Translates Microsoft PowerPoint (OOXML only) documents into Catalog Metacards.

Tika Input Transformer

Translates Microsoft Word, Microsoft Excel, Microsoft PowerPoint, OpenOffice Writer, and PDF
documents into Catalog records.

Video Input Transformer

Creates Catalog metacards from certain video file types.

XML Input Transformer

Translates an XML document into a Catalog Metacard.

3.2. Available Metacard Transformers

The following metacard transformers are available in a standard installation of DDF:

Geo]JSON Metacard Transformer

Translates a metacard into GeoJSON.

KML Metacard Transformer

Translates a metacard into a KML-formatted document.

KML Style Mapper
Maps a KML Style URL to a metacard based on that metacard’s attributes.

Metadata Metacard Transformer

returns the Metacard.METADATA attribute when given a metacard.

Resource Metacard Transformer

Retrieves the resource bytes of a metacard by returning the resource associated with the metacard.

Thumbnail Metacard Transformer

Retrieves the thumbnail bytes of a Metacard by returning the Metacard. THUMBNAIL attribute value.

XML Metacard Transformer

Translates a metacard into an XML-formatted document.

3.3. Available Query Response Transformers

The following query response transformers are available in a standard installation of DDF:

16

developing.pdf#_xml_input_transformer

Atom Query Response Transformer

Transforms a query response into an Atom 1.0 feed.

CSW Query Response Transformer

Transforms a query response into a CSW-formatted document.

GeoJSON Query Response Transformer

Translates a query response into a GeoJSON-formatted document.

KML Query Response Transformer

Translates a query response into a KML-formatted document.

Query Response Transformer Consumer

Translates a query response into a Catalog Metacard.

XML Query Response Transformer

Translates a query response into an XML-formatted document.

3.4. Transformers Details

Availability and configuration details of available transformers.

3.4.1. Atom Query Response Transformer

The Atom Query Response Transformer transforms a query response into an Atom 1.0 feed. The Atom
transformer maps a QueryResponse object as described in the Query Result Mapping.

3.4.1.1. Installing the Atom Query Response Transformer

The Atom Query Response Transformer is installed by default with a standard installation.

3.4.1.2. Configuring the Atom Query Response Transformer

The Atom Query Response Transformer has no configurable properties.

3.4.1.3. Using the Atom Query Response Transformer

Use this transformer when Atom is the preferred medium of communicating information, such as for
feed readers or federation. An integrator could use this with an endpoint to transform query responses
into an Atom feed.

For example, clients can use the OpenSearch Endpoint. The client can query with the format option set
to the shortname, atom.

17

http://tools.ietf.org/html/rfc4287
http://www.opengeospatial.org/standards/cat
http://tools.ietf.org/html/rfc4287
documentation.pdf#_opensearch_endpoint

Sample OpenSearch Query with Atom Specified as Return Format

http://{FQDN}:{PORT}/services/catalog/query?q=ddf?format=atom

Developers could use this transformer to programmatically transform QueryResponse objects on the fly.

Sample Atom Feed from QueryResponse object

<feed xmlns="http://www.w3.0rg/2005/Atom" xmlns:os="http://a9.com/-
/spec/opensearch/1.1/">
<title type="text">Query Response</title>
<updated>2017-01-31723:22:37.298Z</updated>
<id>urn:uuid:a27352¢9-f935-45f0-9b8c-5803095164bb</id>
<link href="#" rel="self" />
<author>
<name>0rganization Name</name>
</author>
<generator version="2.1.0.20130129-1341">ddf123</generator>
<os:totalResults>1</os:totalResults>
<o0s:itemsPerPage>10</0s:itemsPerPage>
<os:startIndex>1</os:startIndex>
<entry xmlns:relevance="http://a9.com/-/opensearch/extensions/relevance/1.0/"
xmlns:fs="http://a39.com/-/opensearch/extensions/federation/1.0/"
xmlns:georss="http://www.georss.org/georss">
<fs:resultSource fs:sourceld="ddf123" />
<relevance:score>0.19</relevance:score>
<id>urn:catalog:id:ee7a161e01754b9db1872bfe39d1ead9</1d>
<title type="text">F-15 lands in Libya; Crew Picked Up</title>
<updated>2013-01-31723:22:31.648Z</updated>
<published>2013-01-31T723:22:31.648Z</published>
<link href=
"http://123.45.67.123:8181/services/catalog/ddf123/ee7a161e01754b9db1872bfe39d1eab9" rel
="alternate" title="View Complete Metacard" />
<category term="Resource" />
<georss:where xmlns:gml="http://www.opengis.net/gml">
<gml:Point>
<gml:p0s>32.8751900768792 13.1874561309814</gml:pos>
</gml:Point>
</georss:where>
<content type="application/xml">
<ns3:metacard xmlns:ns3="urn:catalog:metacard" xmlns:ns2=
“http://www.w3.0rg/1999/x1link" xmlns:ns1="http://www.opengis.net/gml"
xmlns:ns4="http://www.w3.0rqg/2001/SMIL20/" xmlns:nsb5=
"http://www.w3.0rg/2001/SMIL20/Lanqguage” ns1:id="4535c53fc8bc4404a1d32a5ce7a29585">
<ns3:type>ddf.metacard</ns3:type>
<ns3:source>ddf.distribution</ns3:source>
<ns3:geometry name="location">

18

<ns3:value>
<ns1:Point>
<ns1:pos>32.8751900768792 13.1874561309814</ns1:pos>
</ns1:Point>
</ns3:value>
</ns3:geometry>
<ns3:dateTime name="created">
<ns3:value>2013-01-31T716:22:31.648-07:00</ns3:value>
</ns3:dateTime>
<ns3:dateTime name="modified">
<ns3:value>2013-01-31T16:22:31.648-07:00</ns3:value>
</ns3:dateTime>
<ns3:stringxml name="metadata">
<ns3:value>
<ns6:xml xmlns:ns6="urn:sample:namespace" xmlns=
"urn:sample:namespace">Example description.</ns6:xml>
</ns3:value>
</ns3:stringxml>
<ns3:string name="metadata-content-type-version">
<ns3:value>myVersion</ns3:value>
</ns3:string>
<ns3:string name="metadata-content-type">
<ns3:value>myType</ns3:value>
</ns3:string>
<ns3:string name="title">
<ns3:value>Example title</ns3:value>
</ns3:string>
</ns3:metacard>
</content>
</entry>
</feed>

Table 6. Atom Query Response Transformer Result Mapping

XPath to Atom XML Value

/feed/title "Query Response"

/feed/updated ISO 8601 dateTime of when the feed was generated
/feed/id Generated UUID URN &

/feed/author/name Platform Global Configuration organization

/feed/generator Platform Global Configuration site name

http://en.wikipedia.org/wiki/Universally_Unique_Identifier

XPath to Atom XML

/feed/generator/@version

/feed/os:totalResults

/feed/os:itemsPerPage

/feed/os:startIndex

/feed/entry/fs:resultSource/@fs:source
Id

/feed/entry/relevance:score

/feed/entry/id
/feed/entry/title

/feed/entry/updated

/feed/entry/published

/feed/entry/link[@rel="related"]

/feed/entry/link[@rel="alternate’]

/feed/entry/category

/feed/entry//qgeorss:where

/feed/entry/content

20

Value

Platform Global Configuration version

SourceResponse Number of Hits

Request’s Page Size

Request’s Start Index

Source Id from which the Result came.
Metacard.getSourceld()
Result’s relevance score if applicable.

Result.getRelevanceScore()
urn:catalog:id:<Metacard.ID>

Metacard.TITLE

ISO 8601 dateTime of Metacard.MODIFIED

ISO 8601 dateTime of Metacard.CREATED

URL to retrieve underlying resource (if applicable and link
is available)

Link to alternate view of the Metacard (if a link is available)

Metacard.CONTENT_TYPE

GeoRSS GML of every Metacard attribute with format
AttributeFormat.GEOMETRY

Metacard XML generated by
DDF.catalog.transform.MetacardTransformer with
shortname=xml. If no transformer found,

/feed/entry/content/@type will be text and Metacard.ID is
displayed

<content
type="text">4e1f38d1913b4e93ac622e6c1b258f89</content>

3.4.2. CSW Query Response Transformer

The CSW Query Response Transformer transforms a query response into a CSW-formatted document.

3.4.2.1. Installing the CSW Query Response Transformer

The CSW Query Response Transformer is installed by default with a standard installation in the Spatial
application.

3.4.2.2. Configuring the CSW Query Response Transformer

The CSW Query Response Transformer has no configurable properties.

3.4.3. GeoJSON Input Transformer
The GeoJSON input transformer is responsible for translating GeoJSON into a Catalog metacard.

Table 7. GeoJSON Input Transformer Usage

Schema Mime-types
N/A application/json
3.4.3.1. Installing the GeoJSON Input Transformer

The GeoJSON Input Transformer is installed by default with a standard installation.

3.4.3.2. Configuring the GeoJSON Input Transformer

The GeoJSON Input Transformer has no configurable properties.

3.4.3.3. Using the GeoJSON Input Transformer

Using the REST Endpoint, for example, HTTP POST a GeoJSON metacard to the Catalog. Once the REST
Endpoint receives the GeoJSON Metacard, it is converted to a Catalog metacard.

Example HTTP POST of a Local metacard. json File Using the Curl Command

curl -X POST -i -H "Content-Type: application/json" -d "@metacard.json"
https://{FQDN}:{PORT}/services/catalog

3.4.3.4. Conversion to a Metacard

A GeoJSON object consists of a single JSON object. This can be a geometry, a feature, or a
FeatureCollection. The GeoJSON input transformer only converts "feature" objects into metacards
because feature objects include geometry information and a list of properties. A geometry object alone
does not contain enough information to create a metacard. Additionally, the input transformer

21

http://www.opengeospatial.org/standards/cat
http://geojson.org/geojson-spec.html#geojson-objects

currently does not handle FeatureCollections.

Cannot create Metacard from this limited GeoJ]SON

IMPORTANT { "type": "LineString",
"coordinates": [[100.0, 0.0], [101.0, 1.0]]

}

The following sample will create a valid metacard:

Sample Parseable GeoJson (Point)

{

"properties": {
"title": "myTitle",
"thumbnail": "CA==",
"resource-uri": "http://example.com",
"created": "2012-09-01T700:09:19.368+0000",
"metadata-content-type-version": "myVersion",
"metadata-content-type": "myType",
"metadata": "<xml></xml>",
"modified": "2012-09-01700:09:19.368+0000"

b

"type": "Feature",

"geometry": {
"type": "Point",
"coordinates": [

30.0,
10.0

1

}

¥

In the current implementation, Metacard.LOCATION is not taken from the properties list as WKT, but
instead interpreted from the geometry JSON object. The geometry object is formatted according to the
GeoJSON standard. Dates are in the ISO 8601 standard. White space is ignored, as in most cases with
JSON. Binary data is accepted as Base64. XML must be properly escaped, such as what is proper for
normal JSON.

Currently, only Required Attributes are recognized in the properties.

3.4.3.4.1. Metacard Extensibility

Geo]SON supports custom, extensible properties on the incoming GeoJSON using DDF’s extensible
metacard support. To have those customized attributes understood by the system, a corresponding
MetacardType must be registered with the MetacardTypeRegistry. That MetacardType must be specified by

22

http://geojson.org/geojson-spec.html

name in the metacard-type property of the incoming GeoJSON. If a MetacardType is specified on the
GeoJSON input, the customized properties can be processed, cataloged, and indexed.

Sample GeoJSON input

{

“properties": {
"title": "myTitle",
"thumbnail": "CA==",
"resource-uri": "http://example.com",
"created": "2012-09-01700:09:19.368+0000",
"metadata-content-type-version": "myVersion",
"metadata-content-type": "myType",
"metadata": "<xml></xml>",
"modified": "2012-09-01700:09:19.368+0000",
"min-frequency": "10000000",
"max-frequency": "20000000",
"metacard-type": "ddf.metacard.custom.type"

1

"type": "Feature",

"geometry": {
"type": "Point",
"coordinates": [

30.0,
10.0

When the GeoJSON Input Transformer gets GeoJSON with the MetacardType specified, it will perform a
lookup in the MetacardTypeRegistry to obtain the specified MetacardType in order to understand how to
parse the GeoJSON. If no MetacardType is specified, the GeoJSON Input Transformer will assume the
default MetacardType. If an unregistered MetacardType is specified, an exception will be returned to the
client indicating that the MetacardType was not found.

3.4.3.5. Usage Limitations of the GeoJSON Input Transformer
The GeoJSON Input Transformer does not handle multiple geometries.
3.4.4. Geo]JSON Metacard Transformer

GeoJSON Metacard Transformer translates a metacard into GeoJSON.

23

3.4.4.1. Installing the GeoJSON Metacard Transformer
The Geo]JSON Metacard Transformer is not installed by default with a standard installation.
To install:

1. Navigate to the Admin Console.
2. Select the System tab.
3. Select the Features tab.

4. Install the catalog-transformer-json feature.

3.4.4.2. Configuring the GeoJSON Metacard Transformer

The GeoJSON Metacard Transformer has no configurable properties.

3.4.4.3. Using the GeoJSON Metacard Transformer

The GeoJSON Metacard Transformer can be wused programmatically by requesting a
MetacardTransformer with the id geojson. It can also be used within the REST Endpoint by providing the
transform option as geojson.

Example REST GET Method with the GeoJSON Metacard Transformer

https://{FQDN}:{PORT}/services/catalog/0123456789abcdef@123456789abcdef?transform=geojson

24

Example REST GET Output from the GeoJ]SON Metacard Transformer

{
"properties":{
"title":"myTitle",
"thumbnail":"CA==",
"resource-uri":"http:\/\/example.com",
"created":"2012-08-31723:55:19.518+0000",

"metadata-content-type-version":"myVersion",
"metadata-content-type":"myType",
"metadata”:"<xml>text<\/xml>",
"modified":"2012-08-31723:55:19.518+0000",
"metacard-type": "ddf.metacard"

}

ype":"Feature",
"geometry":{

"type":"LineString",
"coordinates":[

3.4.5. GeoJSON Query Response Transformer

The GeoJSON Query Response Transformer translates a query response into a GeoJSON-formatted
document.

3.4.5.1. Installing the GeoJSON Query Response Transformer

The GeoJSON Query Response Transformer is installed by default with a standard installation in the
Catalog application.

25

3.4.5.2. Configuring the GeoJSON Query Response Transformer

The GeoJSON Query Response Transformer has no configurable properties.

3.4.6. KML Metacard Transformer

The KML Metacard Transformer is responsible for translating a metacard into a KML-formatted
document. The KML will contain an HTML description that will display in the pop-up bubble in Google
Earth. The HTML contains links to the full metadata view as well as the resource.

3.4.6.1. Installing the KML Metacard Transformer

The KML Metacard Transformer is installed by default with a standard installation in the Spatial
Application.

3.4.6.2. Configuring the KML Metacard Transformer

The KML Metacard Transformer has no configurable properties.

3.4.6.3. Using the KML Metacard Transformer

Using the REST Endpoint for example, request a metacard with the transform option set to the KML
shortname.

KML Metacard Transformer Example Output

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<kml xmlns:ns2="http://www.google.com/kml/ext/2.2" xmlns="http://www.opengis.net/kml/2.2"
xmlns:ns4="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0" xmlns:ns3=
"http://www.w3.0rg/2005/Atom">
<Placemark id="Placemark-0103c77e66d9428d8f48fab939da528e">
<name>MultiPolygon</name>
<description>&1t; !DOCTYPE html&qgt;
≪htmlé>
≪head&qgt;
<meta content="text/html; charset=windows-1252" http-equiv="content-type">
&1t;style media="screen" type="text/css">
.label {
font-weight: bold
}
.linkTable {
width: 100% }
.thumbnailDiv {
text-align: center
}
img {

26

max-width: 100px;
max-height: 100px;
border-style:none
}
≪ /styleéqt;
< /head>
&1t;bodyégt;

&1t;div class="thumbnailDiv"&qgt;&1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f48
fab939da528e?transform=resource">&1t;img alt="Thumnail"
src="data:image/jpeg;charset=utf-8;baseb64, CA=="Gqgt;&1t;/adqt;&1t;/divagt;

< tablebgt;

< trégt;
&1t;td class="label">Source:&1t;/tddqgt;
< td&qt;ddf.distribution</tdé&qgt;

< /tréqgt;

< tr>
&1t;td class="label"&qgt;Created:&1t;/td&qt;
&1t;td>Wed Oct 30 09:46:29 MDT 2013&1t;/td>

< /trégt;

≪ tr>

&1t;td class="label"Ggt;Effective:</tdbgt;

&1t;td>2014-01-07T14:58:16-0700&1t; /td>

≪ /tréqgt;

< /tableé>

<table class="linkTable"&qgt;
< trégt;

< td&qgt; &1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d848
fab939da528e?transform=html">View Details...</aGqt;&1t;/tdagt;

< td&qt; &1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f48
fab939da528e?transform=resource">Download...&1t;/aqqt;&1t;/tdagt;

< /trégt;
</table>
< /bodyégt;
&1t; /htmlé>
</description>
<TimeSpan>
<beqin>2014-01-07T721:58:16</begin>
</TimeSpan>
<Style id="bluenormal">
<LabelStyle>
<scale>0.0</scale>
</LabelStyle>
<LineStyle>
<color>33ff0000</color>
<width>3.0</width>

27

</LineStyle>
<PolyStyle>
<color>33ff0000</color>
<fill xsi:type="xs:boolean" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">true</fill>
</PolyStyle>
<BalloonStyle>
<text>&1t;h3&qgt;&1t;b>$[name]&1t; /b>&1t; /h3>&1t; table&qt;&1t; tr>&1t;td
width="400">$[description]</tdéqt;&1t;/trégt;&1t;/tabledqgt;</text>
</BalloonStyle>
</Style>
<Style id="bluehighlight">
<LabelStyle>
<scale>1.0</scale>
</LabelStyle>
<LineStyle>
<color>99ff0000</color>
<width>6.0</width>
</LineStyle>
<PolyStyle>
<color>99ff0@000</color>
<fill xsi:type="xs:boolean" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">true</fill>
</PolyStyle>
<BalloonStyle>
<text>&1t;h3&qt;&1t;b&qt;$[name]&1t;/b>&1t;/h3>&1t;table&qt;&1t; tré>
&1t;td width="400"&qgt;$[description]</tdégt;&1t;/trégt;&1t;/tabledgt;</text>
</BalloonStyle>
</Style>
<StyleMap id="default">
<Pair>
<key>normal</key>
<styleUr1>#bluenormal</styleUr1>
</Pair>
<Pair>
<key>highlight</key>
<styleUr1>#bluehighlight</styleUr1>
</Pair>
</StyleMap>
<MultiGeometry>
<Point>
<coordinates>102.0,2.0</coordinates>
</Point>
<MultiGeometry>
<Polygon>
<outerBoundaryIs>
<LinearRing>
<coordinates>102.0,2.0 103.0,2.0 103.0,3.0 102.0,3.0 102.0,2.0</

coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
<Polygon>
100.8,0.2
<outerBoundaryIs>
<LinearRing>
<coordinates>100.0,0.0 101.0,0.0 101.0,1.0 100.0,1.0 100.0,0.0 100.2,0.2 100.8
,0.8 100.2,0.8 100.2,0.2</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
</MultiGeometry>
</Placemark>
</kml>

3.4.7. KML Query Response Transformer

The KML Query Response Transformer translates a query response into a KML-formatted document.
The KML will contain an HTML description for each metacard that will display in the pop-up bubble in
Google Earth. The HTML contains links to the full metadata view as well as the resource.

3.4.7.1. Installing the KML Query Response Transformer

The spatial-kml-transformer feature is installed by default in the Spatial Application.

3.4.7.2. Configuring the KML Query Response Transformer

The KML Query Response Transformer has no configurable properties.

3.4.7.3. Using the KML Query Response Transformer

Using the OpenSearch Endpoint, for example, query with the format option set to the KML shortname:
kml.

KML Query Response Transformer URL

http://{FQDN}:{PORT}/services/catalog/query?q=schematypesearch&format=kml

KML Query Response Transformer Example Output
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<kml xmlns:ns2="http://www.google.com/kml/ext/2.2" xmlns="http://www.opengis.net/kml/2.2"
xmlns:ns4="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0" xmlns:ns3=

29

30

"http://www.w3.0rg/2005/Atom">
<Document id="0884d8c-cf9Ib-44a1-bb5a-d3c6fb9a9bbo">
<name>Results (1)</name>
<open xsi:type="xs:boolean" xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi=
“http://www.w3.0rg/2001/XMLSchema-instance">false</open>
<Style id="bluenormal">
<LabelStyle>
<scale>0.0</scale>
</LabelStyle>
<LineStyle>
<color>33ff0000</color>
<width>3.0</width>
</LineStyle>
<PolyStyle>
<color>33ff0000</color>
<fill xsi:type="xs:boolean" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">true</fill>
</PolyStyle>
<BalloonStyle>
<text>&1t;h3&qgt;&1t; b>$[name]&1t;/b&qt;&1t; /h3>&1t; table&qt;&1t; tré>
&1t;td width="400"gqt;$[description]</tdégt;&1t;/trégt;&1t;/tabledgt;</text>
</BalloonStyle>
</Style>
<Style id="bluehighlight">
<LabelStyle>
<scale>1.0</scale>
</LabelStyle>
<LineStyle>
<color>99ff0000</color>
<width>6.0</width>
</LineStyle>
<PolyStyle>
<color>99ff0@000</color>
<fill xsi:type="xs:boolean" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">true</fill>
</PolyStyle>
<BalloonStyle>
<text>&1t;h3&qt;&1t;b&qt;$[name]&1t;/b>&1t;/h3>&1t;table&qt;&1t; tré>
&1t;td width="400"&qgt;$[description]</tdégt;&1t;/trégt;&1t;/tabledgt;</text>
</BalloonStyle>
</Style>
<StyleMap id="default">
<Pair>
<key>normal</key>
<styleUr1>#bluenormal</styleUr1>
</Pair>
<Pair>
<key>highlight</key>

<styleUr1>#bluehighlight</styleUrl>
</Pair>
</StyleMap>
<Placemark id="Placemark-0103c77e66d9428d8f48fab939da528e">
<name>MultiPolygon</name>
<description>< !DOCTYPE html>
< html>
<head>
<meta content="text/html; charset=windows-1252" http-equiv="content-type">
&1t;style media="screen" type="text/css">
.label {
font-weight: bold
}
.linkTable {
width: 100% }
.thumbnailDiv {
text-align: center

}img {
max-width: 100px;
max-height: 100px;
border-style:none
}
</styleédqt;
< /head>
&1t;bodyégt;

<div class="thumbnailDiv"><a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f
48fab939da528e?transform=resource">&1t;img alt="Thumnail"
src="data:image/jpeg;charset=utf-8;base64, CA=="&qt;</adqt;&1t;/divéqgt;

< tableégt;
< tr>
<td class="label">Source:</td>
&1t; td&qt;ddf.distribution</td&qgt;
</tréqt;
< tr>
&1t;td class="label">Created:</td>
&1t; td>Wed Oct 30 09:46:29 MDT 2013&1t;/td>
≪ /tréqgt;
< trégt;
<td class="label">Effective:&1t;/td>
&1t; td&qt;2014-01-07T14:48:47-0700&1t; /td>
< /trégt;
</tableé&qt;
<table class="linkTable">
< tr>

< td&qgt; <a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f
48fab939da528e?transform=html">View Details...</ak&qgt;&1t; /td>

31

&1t; td&qt; &1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f
48fab939da528e?transform=resource">Download...&1t; /a>&1t; /td>

< /trégt;
</tableé&qt;
< /bodyé>
≪ /htmlé>
</description>
<TimeSpan>
<begin>2014-01-07721:48:47</begin>
</TimeSpan>
<styleUrl>#tdefault</styleUrl>
<MultiGeometry>

<Point>

<coordinates>102.0,2.0</coordinates>
</Point>

<MultiGeometry>

<Polygon>
<outerBoundaryIs>
<LinearRing>
<coordinates>102.0,2.0 103.0,2.0 103.0,3.0 102.9,3.0
102.0,2.0</coordinates>
</LinearRing>
100.8,0.2
</outerBoundaryIs>
</Polygon>
<Polygon>
<outerBoundaryIs>
<LinearRing>
<coordinates>100.0,0.0 101.0,0.0 101.0,1.0 100.0,1.0 100.0,0.0 100.2,0.2
100.8,0.8 100.2,0.8 100.2,0.2</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
</MultiGeometry>
</MultiGeometry>
</Placemark>
</Document>
</kml>

3.4.8. KML Style Mapper

The KML Style Mapper provides the ability for the KMLTransformer to map a KML Style URL to a
metacard based on that metacard’s attributes. For example, if a user wanted all JPEGs to be blue, the
KML Style Mapper provides the ability to do so. This would also allow an administrator to configure

32

metacards from each source to be different colors.

The configured style URLs are expected to be HTTP URLs. For more information on style URL’s, refer to
the KML Reference .

The KML Style Mapper supports all basic and extended metacard attributes. When a style mapping is
configured, the resulting transformed KML contain a <styleUr1> tag pointing to that style, rather than
the default KML style supplied by the KMLTransformer.

3.4.8.1. Installing the KML Style Mapper

The KML Style Mapper is installed by default with a standard installation in the Spatial Application in
the spatial-kml-transformer feature.

3.4.8.2. Configuring the KML Style Mapper

The properties below describe how to configure a style mapping. The configuration name is Spatial
KML Style Map Entry.

See KML Style Mapper configurations for all possible configurations.

KML Style Mapper Example Values

<xmlns="http://www.opengis.net/kml/2.2"
xmlns:ns4="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"
xmlns:ns3="http://www.w3.0rg/2005/Atom">
<Placemark id="Placemark-0103c77e66d9428d8f48fab939da528e">
<name>MultiPolygon</name>
<description>&1t; !DOCTYPE html>
&1t;htmlé>
&1t;headéqgt;
<meta content="text/html; charset=windows-1252" http-equiv="content-type">
<style media="screen" type="text/css">
.label {
font-weight: bold
}
.LlinkTable {
width: 100% }
.thumbnailDiv {
text-align: center
} img {
max-width: 100px;
max-height: 100px;
border-style:none
}
< /style&qt;
&1t; /head>
&1t;bodyégt;

33

https://developers.google.com/kml/documentation/kmlreference#styleurl
reference.pdf#_spatial_application_reference
reference.pdf#_org.codice.ddf.spatial.kml.style

<div class="thumbnailDiv"&qgt;&1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f48
fab939da528e?transform=resource"&qt;&1t;img alt="Thumnail"
src="data:image/jpeq;charset=utf-8;base64, CA=="&qgt;&1t;/ak&qgt;&1t;/divégt;

&1t; tablebgt;
< trégt;
&1t;td class="label">Source:&1t;/tdé&qt;
&1t; td&qt;ddf.distribution</td>
< /tréqgt;
< trégt;
&1t;td class="label"&qgt;Created:&1t;/td&qt;
&1t;td>Wed Oct 30 09:46:29 MDT 2013&1t;/tdé>
< /tréqgt;
< tr>
&1t;td class="label"Ggt;Effective:</tdbat;
&1t;td>2014-01-07T14:58:16-0700&1t; /td>
≪ /tréqgt;
</table>
<table class="linkTable"&qgt;
< trégt;

< td&qgt; &1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d848
fab939da528e?transform=html">View Details...</aGqt;&1t;/tdagt;

< td> &1t;a
href="http://{FQDN}:{PORT}/services/catalog/sources/ddf.distribution/0103c77e66d9428d8f48
fab939da528e?transform=resource">Download...&1t;/aqqt;&1t;/tdaat;

</tré>
</table>
< /bodyé>
&1t;/html>
</description>
<TimeSpan>
<beqin>2014-01-07T721:58:16</begin>
</TimeSpan>
<styleUrl>http://example.com/kml/style#sampleStyle</styleUrl>
<MultiGeometry>
<Point>
<coordinates>102.0,2.0</coordinates>
</Point>
<MultiGeometry>
<Polygon>
<outerBoundaryIs>
<LinearRing>
<coordinates>102.0,2.0 103.0,2.0 103.90,3.0 102.0,3.0
102.0,2.0</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>

34

<Polygon>
100.8,0.2
<outerBoundaryIs>
<LinearRing>
<coordinates>100.0,0.0 101.0,0.0 101.0,1.0 100.0,1.0 100.0,0.0 100.2,0.2
100.8,0.8 100.2,0.8 100.2,0.2</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
</MultiGeometry>
</MultiGeometry>
</Placemark>
</kml>

3.4.9. Metadata Metacard Transformer

The Metadata Metacard Transformer returns the Metacard.METADATA attribute when given a metacard.
The MIME Type returned is text/xml.

3.4.9.1. Installing the Metadata Metacard Transformer

The Metadata Metacard Transformer is installed by default in a standard installation with the Catalog
application.

3.4.9.2. Configuring the Metadata Metacard Transformer

The Metadata Metacard Transformer has no configurable properties.

3.4.9.3. Using the Metadata Metacard Transformer

The Metadata Metacard Transformer can be used programmatically by requesting a metacard
transformer with the id metadata. It can also be used within the REST Endpoint by providing the
transform option as metadata.

Example REST GET method with the Metadata Metacard Transformer

http://{FQDN}:{PORT}/services/catalog/0123456789abcdef@123456789abcdef?transform=metadata

3.4.10. PDF Input Transformer
The PDF Input Transformer is responsible for translating a PDF document into a Catalog Metacard.

Table 8. PDF Input Transformer Usage

35

Schema Mime-types
N/A application/pdf
3.4.10.1. Installing the PDF Input Transformer

The PDF Transformer is installed by default with a standard installation in the Catalog application.

3.4.10.2. Configuring the PDF Input Transformer

To configure the PDF Input Transformer:

1. Navigate to the Catalog application.
2. Select the Configuration tab.

3. Select the PDF Input Transformer.
These configurations are available for the PDF Input Transformer:

See PDF Input Transformer configurations for all possible configurations.

3.4.11. PPTX Input Transformer

The PPTX Input Transformer translates Microsoft PowerPoint (OOXML only) documents into Catalog
Metacards, using Apache Tika for basic metadata and Apache POI for thumbnail creation. The PPTX
Input Transformer ingests PPTX documents into the DDF Content Repository and the Metadata Catalog,
and adds a thumbnail of the first page in the PPTX document.

The PPTX Input Transformer will take precedence over the Tika Input Transformer for PPTX
documents.

Table 9. PPTX Input Transformer Usage

Schema Mime-types

N/A application/vnd.openxmlformats-
officedocument.presentationml.presentation

3.4.11.1. Installing the PPTX Input Transformer

This transformer is installed by default with a standard installation in the Catalog application.

3.4.11.2. Configuring the PPTX Input Transformer

The PPTX Input Transformer has no configurable properties.

3.4.12. Query Response Transformer Consumer

The Query Response Transformer Consumer is responsible for translating a query response into a
Catalog Metacard.

36

reference.pdf#_ddf.catalog.transformer.input.pdf.PdfInputTransformer
https://tika.apache.org/
https://poi.apache.org/

3.4.12.1. Installing the Query Response Transformer Consumer

The Query Response Transformer Consumer is installed by default with a standard installation in the
Catalog application.

3.4.12.2. Configuring the Query Response Transformer Consumer

The Query Response Transformer Consumer has no configurable properties.

3.4.13. Resource Metacard Transformer

The Resource Metacard Transformer retrieves a resource associated with a metacard.

3.4.13.1. Installing the Resource Metacard Transformer

The Resource Metacard Transformer is installed by default in a standard installation with the Catalog
application as the feature catalog-transformer-resource.

3.4.13.2. Configuring the Resource Metacard Transformer

The Resource Metacard Transformer has no configurable properties.

3.4.13.3. Using the Resource Metacard Transformer

Endpoints or other components can retrieve an instance of the Resource Metacard Transformer using
its id resource.

Sample Resource Metacard Transformer Blueprint Reference Snippet

<reference id="metacardTransformer" interface="ddf.catalog.transform.MetacardTransformer"
filter="(id=resource)"/>

3.4.14. Thumbnail Metacard Transformer

The Thumbnail Metacard Transformer retrieves the thumbnail bytes of a Metacard by returning the
Metacard.THUMBNAIL attribute value.

3.4.14.1. Installing the Thumbnail Metacard Transformer

This transformer is installed by default with a standard installation in the Catalog application.

3.4.14.2. Configuring the Thumbnail Metacard Transformer

The Thumbnail Metacard Transformer has no configurable properties.

37

3.4.14.3. Using the Thumbnail Metacard Transformer

Endpoints or other components can retrieve an instance of the Thumbnail Metacard Transformer
using its id thumbnail.

Sample Blueprint Reference Snippet

<reference id="metacardTransformer" interface="ddf.catalog.transform.MetacardTransformer"
filter="(id=thumbnail)"/>

The Thumbnail Metacard Transformer returns a BinaryContent object of the Metacard. THUMBNAIL bytes
and a MIME Type of image/jpeq.

3.4.15. Tika Input Transformer

The Tika Input Transformer is the default input transformer responsible for translating Microsoft
Word, Microsoft Excel, Microsoft PowerPoint, OpenOffice Writer, and PDF documents into Catalog
records. This input transformer utilizes Apache Tika to provide basic support for these mime types.
The metadata common to all these document types, e.g., creation date, author, last modified date, etc.,
is extracted and used to create the catalog record. The Tika Input Transformer’s main purpose is to
ingest these types of content into the Metadata Catalog.

The Tika input transformer is most basic input transformer and the last to be invoked. This allows any
registered input transformers that are more specific to a document type to be invoked instead of this
rudimentary input transformer.

Table 10. Tika Input Transformer Usage

Schema Mime-types
N/A This basic transformer can ingest many file types. See All Formats
Supported.

3.4.15.1. Installing the Tika Input Transformer

This transformer is installed by default with a standard installation in the Catalog.

3.4.15.2. Configuring the Tika Input Transformer

The properties below describe how to configure the Tika input transformer.

See Tika Input Transformer configurations for all possible configurations.

3.4.16. Video Input Transformer

The video input transformer Creates Catalog metacards from certain video file types. Currently, it is

38

https://tika.apache.org
metadata.pdf#_all_file_formats_supported
metadata.pdf#_all_file_formats_supported
reference.pdf#_ddf.catalog.transformer.input.tika.TikaInputTransformer

handles MPEG-2 transport streams as well as MPEG-4, AVI, MOV, and WMV videos. This input
transformer uses Apache Tika to extract basic metadata from the video files and applies more
sophisticated methods to extract more meaningful metadata from these types of video.
Table 11. Video Input Transformer Usage
Schema Mime-types
N/A * video/avi

» video/msvideo

* video/vnd.avi

* video/x-msvideo

* video/mp4

» video/MP2T

» video/mpeg

* video/quicktime

* video/wmv

e video/x-ms-wmv

3.4.16.1. Installing the Video Input Transformer

This transformer is installed by default with a standard installation in the Catalog application.

3.4.16.2. Configuring the Video Input Transformer

The Video Input Transformer has no configurable properties.

3.4.17. XML Input Transformer
The XML Input Transformer is responsible for translating an XML document into a Catalog Metacard.

Table 12. XML Input Transformer Usage

Schema Mime-types

urn:catalog:metacard text/xml

3.4.17.1. Installing the XML Input Transformer

The XML Input Transformer is installed by default with a standard installation in the Catalog
application.

39

https://tika.apache.org

3.4.17.2. Configuring the XML Input Transformer

The XML Input Transformer has no configurable properties.

3.4.18. XML Metacard Transformer

The XML metacard transformer is responsible for translating a metacard into an XML-formatted
document. The metacard element that is generated is an extension of gml:AbstractFeatureType, which
makes the output of this transformer GML 3.1.1 compatible.

3.4.18.1. Installing the XML Metacard Transformer
This transformer comes installed by default with a standard installation in the Catalog application.
To install or uninstall manually, use the catalog-transformer-xml feature.

3.4.18.2. Configuring the XML Metacard Transformer

The XML Metacard Transformer has no configurable properties.

3.4.18.3. Using the XML Metacard Transformer

Using the REST Endpoint for example, request a metacard with the transform option set to the XML
shortname.

XML Metacard Transformer URL

https://{FQDN}:{PORT}/services/catalog/ac0c6917d5ee45bfb3c2bf8cd2ebaab7?transform=xml

Table 13. Metacard to XML Mappings

Metacard Variables XML Element

id metacard/@gml:id

metacardType metacard/type

sourceld metacard/source

all other attributes Tet?card/<AttributeType>[name:'<AttributeName>']
value

For instance, the value for the metacard
attribute named "title" would be found at
metacard/string[@name="title']/value

XML Adapted Attributes (AttributeTypes)
« boolean
« baseb4Binary
o dateTime
« double
o float

40

« geometry
o int

« long

« object

« short

« string

o stringxml

3.4.19. XML Query Response Transformer

The XML Query Response Transformer is responsible for translating a query response into an XML-
formatted document. @ The metacard element generated is an extension of
gml:AbstractFeatureCollectionType, which makes the output of this transformer GML 3.1.1 compatible.

3.4.19.1. Installing the XML Query Response Transformer

This transformer is installed by default with a standard installation in the Catalog application. To
uninstall, uninstall the catalog-transformer-xml feature.

3.4.19.2. Configuring the XML Query Response Transformer

To configure the XML Query Response Transformer:

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Select the Configuration tab.

4. Select the XML Query Response Transformer.

See XML Query Response Transformer configurations for all possible configurations.

3.4.19.3. Using the XML Query Response Transformer

Using the OpenSearch Endpoint, for example, query with the format option set to the XML shortname
xmL.

XML Query Response Transformer Query Example

http://{FQDN}:{PORT}/services/catalog/query?q=input?format=xml

41

http://www.opengeospatial.org/projects/groups/gmldwg
reference.pdf#_ddf.catalog.transformer.xml.XmlResponseQueueTransformer

XML Query Response Transformer Example Output

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns3:metacards xmlns:ns1="http://www.opengis.net/gml" xmlns:ns2=
“http://www.w3.0rg/1999/x1link" xmlns:ns3="urn:catalog:metacard" xmlns:nsd=
"http://www.w3.0rg/2001/SMIL20/" xmlns:ns5="http://www.w3.0rg/2001/SMIL20/Language">
<ns3:metacard ns1:i1d="000baddd7d974e258845a84966d766eb">
<ns3:type>ddf.metacard</ns3:type>
<ns3:source>southwestCatalogl</ns3:source>
<ns3:dateTime name="created">
<ns3:value>2013-04-10T15:30:05.702-07:00</ns3:value>
</ns3:dateTime>
<ns3:string name="title">
<ns3:value>Input 1</ns3:value>
</ns3:string>
</ns3:metacard>
<ns3:metacard ns1:i1d="00c@eb4ba9db74f8b988ef7060e18ab6a7">
<ns3:type>ddf.metacard</ns3:type>
<ns3:source>southwestCatalogl</ns3:source>
<ns3:dateTime name="created">
<ns3:value>2013-04-10T715:30:05.702-07:00</ns3:value>
</ns3:dateTime>
<ns3:string name="title">
<ns3:value>Input 2</ns3:value>
</ns3:string>
</ns3:metacard>
</ns3:metacards>

3.5. Mime Type Mapper

The MimeTypeMapper is the entry point in DDF for resolving file extensions to mime types, and vice
versa.

MimeTypeMappers are used by the ResourceReader to determine the file extension for a given mime type in
aid of retrieving a resource. MimeTypeMappers are also used by the FileSystemProvider in the Catalog
Framework to read a file from the content file repository.

The MimeTypeMapper maintains a list of all of the MimeTypeResolvers in DDF.

The MimeTypeMapper accesses each MimeTypeResolver according to its priority until the provided file
extension is successfully mapped to its corresponding mime type. If no mapping is found for the file
extension, null is returned for the mime type. Similarly, the MimeTypeMapper accesses each
MimeTypeResolver according to its priority until the provided mime type is successfully mapped to its
corresponding file extension. If no mapping is found for the mime type, null is returned for the file

42

extension.

For files with no file extension, the MimeTypeMapper will attempt to determine the mime type from
the contents of the file. If it is unsuccessful, the file will be ingested as a binary file.

DDF Mime Type Mapper
Core implementation of the DDF Mime API.

3.5.1. DDF Mime Type Mapper

The DDF Mime Type Mapper is the core implementation of the DDF Mime API. It provides access to all
MimeTypeResolvers within DDF, which provide mapping of mime types to file extensions and file
extensions to mime types.

3.5.1.1. Installing the DDF Mime Type Mapper

The DDF Mime Type Mapper is installed by default with a standard installation in the Platform
application.

3.5.1.2. Configuring DDF Mime Type Mapper

The DDF Mime Type Mapper has no configurable properties.

3.6. Mime Type Resolver

A MimeTypeResolver is a DDF service that can map a file extension to its corresponding mime type and,
conversely, can map a mime type to its file extension.

MimeTypeResolvers are assigned a priority (0-100, with the higher the number indicating the higher
priority). This priority is used to sort all of the MimeTypeResolvers in the order they should be checked to
map a file extension to a mime type (or vice versa). This priority also allows custom MimeTypeResolvers
to be invoked before default MimeTypeResolvers by setting custom resolver’s priority higher than the
default.

MimeTypeResolvers are not typically invoked directly. Rather, the MimeTypeMapper maintains a list of
MimeTypeResolvers (sorted by their priority) that it invokes to resolve a mime type to its file extension
(or to resolve a file extension to its mime type).

Custom Mime Type Resolver

The Custom Mime Type Resolver is a MimeTypeResolver that defines the custom mime types that DDF
will support.

Tika Mime Type Resolver

Provides support for resolving over 1300 mime types.

43

3.6.1. Custom Mime Type Resolver
These are mime types not supported by the default TikaMimeTypeResolver.

Table 14. Custom Mime Type Resolver Default Supported Mime Types

File Extension Mime Type

nitf image/nitf

ntf image/nitf

json json=application/json;id=geojson

As a MimeTypeResolver, the Custom Mime Type Resolver will provide methods to map the file extension
to the corresponding mime type, and vice versa.

3.6.1.1. Installing the Custom Mime Type Resolver

One Custom Mime Type Resolver is configured and installed for the image/nitf mime type. This custom
resolver is bundled in the mime-core-app application and is part of the mime-core feature.

Additional Custom Mime Type Resolvers can be added for other custom mime types.

3.6.1.2. Configuring the Custom Mime Type Resolver

The configurable properties for the Custom Mime Type Resolver are accessed from the MIME Custom
Types configuration in the Admin Console.

* Navigate to the Admin Console.
* Select the Platform application.
» Select Configuration.

» Select MIME Custom Types.

Managed Service Factory PID
o Ddf_Custom_Mime_Type_Resolver

See Custom Mime Type Resolver configurations for all possible configurations.

3.6.2. Tika Mime Type Resolver

The TikaMimeTypeResolver is a MimeTypeResolver that is implemented using the Apache Tika open source
product.

Using the Apache Tika content analysis toolkit, the TikaMimeTypeResolver provides support for resolving
over 1300 mime types, but not all mime types yield the same quality metadata.

44

reference.pdf#_DDF_Custom_Mime_Type_Resolver
https://tika.apache.org

The TikaMimeTypeResolver is assigned a default priority of -1 to insure that it is always invoked last by
the MimeTypeMapper. This insures that any custom MimeTypeResolvers that may be installed will be
invoked before the TikaMimeTypeResolver.

The TikaMimeTypeResolver provides the bulk of the default mime type support for DDF.

3.6.2.1. Installing the Tika Mime Type Resolver

The TikaMimeTypeResolver is bundled as the mime-tika-resolver feature in the mime-tika-app application.

This feature is installed by default.

3.6.2.2. Configuring the Tika Mime Type Resolver

The Tika Mime Type Resolver has no configurable properties.

4. Catalog Plugins

Endpoints
Operations Data
Transformers Federation Sources
Catalog Framework
Eventing
Catalog
Plugins Resources

Catalog Provider

Storage Provider

Catalog Architecture: Catalog Plugins

Plugins are additional tools to use to add additional business logic at certain points, depending on the
type of plugin.

The Catalog Framework calls Catalog Plugins to process requests and responses as they enter and leave
the Framework.

45

4.1. Types of Plugins

Plugins can be designed to run before or after certain processes. They are often used for validation,
optimization, or logging. Many plugins are designed to be called at more than one time. See Catalog
Plugin Compatibility.

Pre-Authorization Plugins

Perform any changes needed before security rules are applied.

Policy Plugins

Allows or denies access to the Catalog operation or response.

Access Plugins

Used to build policy information for requests.

Pre-Ingest Plugins

Perform any changes to a metacard prior to ingest.

Post-Ingest Plugins

Perform actions after ingest is completed.

Post-Process Plugins

Performs additional processing after ingest.

Pre-Query Plugins

Perform any changes to a query before execution.

Pre-Federated-Query Plugins

Perform any changes to a federated query before execution.

Post-Query Plugins

Perform any changes to a response after query completes.

Post-Federated-Query Plugins

Perform any changes to a response after federated query completes.

Pre-Resource Plugins

Perform any changes to a request associated with a metacard prior to download.

Post-Resource Plugins

Perform any changes to a resource after download.

Pre-Create Storage Plugins

Perform any changes before creating a resource.

46

Post-Create Storage Plugins

Perform any changes after creating a resource.

Pre-Update Storage Plugins

Perform any changes before updating a resource.

Post-Update Storage Plugins

Perform any changes after updating a resource.

Pre-Subscription Plugins

Perform any changes before creating a subscription.

Pre-Delivery Plugins

Perform any changes before delivering a subscribed event.

Plugins are called in a specific order during different operations. Custom Plugins can be added to the
chain for special use cases.

47

developing.pdf#_developing_catalog_plugins

Query
Request

PreAuthorization. processPreQuery

PolicyPlugin. processPreQuery

AccessPlugin. processPreQuery

PreQueryPlugin.process

PreFederatedQueryPlugin. process

PostFederatedQueryPlugin. process

PolicyPlugin.processPostQuery. process

AccessPlugin. processPostQuery

PostQueryPlugin. process

Query Request Plugin Call Order

48

Create
Request

PreAuthorization. processPreCreate

PolicyPlugin. processPreCreate

AccessPlugin. processPreCreate

PrelngestPlugin. process

PostingestPlugin. process

Create Request Plugin Call Order

49

Update
Request

PreAuthorization. processPrelUpdate

PolicyPlugin.processPreUpdate

AccessPlugin. processPrelpdate

PrelngestPlugin. process

PostingestPlugin. process

Update Request Plugin Call Order

50

Delete
Request

PreAuthorization. processPreDelete

PolicyPlugin. processPreDelete

AccessPlugin.processPreDelete

PrelngestPlugin. process

PolicyPlugin. processPostDelete

AccessPlugin. processPostDelete

PostingestPlugin. process

Delete Request Plugin Call Order

51

Resource
Request

PreAuthorization.processPreResource

PolicyPlugin.processPreResource

AccessPlugin. processPostResource

PreResourcePlugin.process

PolicyPlugin. processPostResource

AccessPlugin. processPostResource

PostResourcePlugin. process

Resource Request Plugin Call Order

52

Storage Create
Request

i

PreAuthorization.processPreCreate

PreCreateStoragePlugin.process

v

[See Create

v

PostCreateStoragePlugin. process

Storage Create Request Plugin Call Order

Storage Update
Request

PreAuthorization. processPrelUpdate

PreUpdateStoragePlugin. process

v

[See Update

v

PostUpdateStoragePlugin. process

Storage Update Request Plugin Call Order

Table 15. Catalog Plugin Compatibility

33

Plugin Pre- Policy
Authoriz Plugins
ation

Plugins

Catalog
Backup
Plugin

Catalog X
Policy
Plugin

Client X
Info
Plugin

Content
URI
Access
Plugin

Event
Processor

Expiratio
n Date
Pre-Ingest
Plugin

Filter
Plugin

GeoCoder
Plugin

Historian X
Policy
Plugin

JPEG2000
Thumbnai
1
Converter

Metacard X
Attribute

Security

Policy

Plugin

Metacard

Backup

File

Storage

Provider

54

Access
Plugins

Pre-
Ingest
Plugins

Post- Pre- Post-
Ingest Query Query
Plugins Plugins Plugins
X
X

X
X

Post-
Process
Plugins

developing.pdf#_catalog_backup_plugin
developing.pdf#_catalog_backup_plugin
developing.pdf#_catalog_backup_plugin
developing.pdf#_filter_plugin
developing.pdf#_filter_plugin
developing.pdf#_metacard_attribute_security_policy_plugin
developing.pdf#_metacard_attribute_security_policy_plugin
developing.pdf#_metacard_attribute_security_policy_plugin
developing.pdf#_metacard_attribute_security_policy_plugin
developing.pdf#_metacard_attribute_security_policy_plugin

Plugin Pre- Policy
Authoriz Plugins
ation
Plugins

Metacard
Backup S3
Storage
Provider

Metacard
Groomer

Metacard
Resource
Size
Plugin

Metacard X
Validity

Filter

Plugin

Metacard
Validity
Marker

Metacard x
Ingest
Network
Plugin

Operation
Plugin

Point of X
Contact

Policy

Plugin

Processin
g Post-
Ingest
Plugin

Resource X
URI Policy
Plugin

Security
Audit
Plugin

Security

Logging
Plugin

developing.pdf#_security_logging_plugin
developing.pdf#_security_logging_plugin
developing.pdf#_security_logging_plugin

Plugin Pre- Policy Access Pre- Post- Pre- Post- Post-
Authoriz Plugins Plugins Ingest Ingest Query Query Process
ation Plugins Plugins Plugins Plugins Plugins
Plugins

Security X
Plugin

Workspac X
e Access
Plugin

Workspac X
e Pre-

Ingest

Plugin

Workspac X
e Sharing

Policy

Plugin

XML X
Attribute

Security

Policy

Plugin

Table 16. Catalog Plugin Compatibility, Cont.

Plugin Pre- Post- Pre- Post- Pre- Post- Pre- Post- Pre- Pre-
Federat Federat Resour Resour Create Create Update Update Subscri Deliver
ed- ed- ce ce Storage Storage Storage Storage ption 'y

Query Query Plugins Plugins Plugins Plugins Plugins Plugins Plugins Plugins
Plugins Plugins

Checksu X X

m

Plugin

Security x! X X X X X X X

Logging

Plugin

Video X X
Thumb

nail

Plugin

4.1.1. Pre-Authorization Plugins

Pre-delivery plugins are invoked before any security rules are applied. This is an opportunity to take
any action before authorization, including but not limited to:

56

developing.pdf#_xml_attribute_security_policy_plugin
developing.pdf#_xml_attribute_security_policy_plugin
developing.pdf#_xml_attribute_security_policy_plugin
developing.pdf#_xml_attribute_security_policy_plugin
developing.pdf#_xml_attribute_security_policy_plugin
developing.pdf#_security_logging_plugin
developing.pdf#_security_logging_plugin
developing.pdf#_security_logging_plugin

* logging.

* adding network-specific information.

* adding user-identifying information.
4.1.1.1. Available Pre-Authorization Plugins

Client Info Plugin

Injects request-specific network information into a request.
Metacard Ingest Network Plugin

Adds attributes for network info from ingest request.
4.1.2. Policy Plugins

Policy plugins are invoked to set up the policy for a request/response. This provides an opportunity to
attach custom requirements on operations or individual metacards. All the 'requirements' from each
Policy plugin will be combined into a single policy that will be included in the request/response. Access
plugins will be used to act on this combined policy.

4.1.2.1. Available Policy Plugins

Catalog Policy Plugin

Configures user attributes required for catalog operations.

Historian Policy Plugin

Protects metacard history from being edited by users without the history role.

Metacard Attribute Security Policy Plugin

Collects attributes into a security field for the metacard.

Metacard Validity Filter Plugin

Determines whether to filter metacards with validation errors or warnings.

Point of Contact Policy Plugin
Adds a policy if Point of Contact is updated.

Resource URI Policy Plugin

Configures required user attributes for setting or altering a resource URI.

Workspace Sharing Policy Plugin

Collects attributes for a workspace to identify the appropriate policy to allow sharing.

XML Attribute Security Policy Plugin

Finds security attributes contained in a metacard’s metadata.

57

developing.pdf#_metacard_attribute_security_policy_plugin
developing.pdf#_xml_attribute_security_policy_plugin

4.1.3. Access Plugins

Access plugins are invoked directly after the Policy plugins have been successfully executed. This is an
opportunity to either stop processing or modify the request/response based on policy information.

4.1.3.1. Available Access Plugins

Content URI Access Plugin

Prevents a Metacard’s resource URI from being overridden by an incoming UpdateRequest.

Filter Plugin

Performs filtering on query responses as they pass through the framework.

Operation Plugin

Validates a user or subject’s security attributes.

Security Audit Plugin

Audits specific metacard attributes.

Security Plugin

Identifies the subject for an operation.

Workspace Access Plugin

Prevents non-owner users from changing workspace permissions.

4.1.4. Pre-Ingest Plugins

Pre-ingest plugins are invoked before an ingest operation is sent to the catalog. They are not run on a
query. This is an opportunity to take any action on the ingest request, including but not limited to:

* validation.

* logging.

* auditing.

* optimization.

* security filtering.

4.1.4.1. Available Pre-Ingest Plugins

Expiration Date Pre-Ingest Plugin

Adds or updates expiration dates for the resource.

GeoCoder Plugin
Populates the Location.COUNTRY_CODE attribute if the Metacard has an associated location.

58

developing.pdf#_filter_plugin

Metacard Groomer

Modifies metacards when created or updated.

Metacard Validity Marker

Modifies metacards when created or ingested according to metacard validator services.

Security Logging Plugin

Logs operations to the security log.
Workspace Pre-Ingest Plugin

Verifies that a workspace has an associated email to enable sharing.
4.1.5. Post-Ingest Plugins

Post-ingest plugins are invoked after data has been created, updated, or deleted in a Catalog Provider.

4.1.5.1. Available Post-Ingest Plugins

Catalog Backup Plugin

Enables backup of the catalog and its metacards.

Event Processor

Creates, updates, and deletes subscriptions.

Metacard Backup File Storage Provider

Stores backed-up metacards.

Metacard Backup S3 Storage Provider

Stores backed-up metacards in a specified S3 bucket and key.

Processing Post-Ingest Plugin

Submits catalog Create, Update, or Delete requests to the Processing Framework.

Security Logging Plugin

Logs operations to the security log.

4.1.6. Post-Process Plugins

NOTE This code is experimental. While this interface is functional and tested, it may change
or be removed in a future version of the library.

Post-Process Plugins are invoked after a metacard has been created, updated, or deleted and

committed to the Catalog. They are the last plugins to run and are triggered by a Post-Ingest Plugin.

Post-Process plugins are well-suited for asynchronous tasks. See the Asynchronous Processing

Framework for more information about how Post-Process Plugins are used.

39

developing.pdf#_security_logging_plugin
developing.pdf#_catalog_backup_plugin
developing.pdf#_security_logging_plugin

4.1.6.1. Available Post-Process Plugins

None.

4.1.7. Pre-Query Plugins

Pre-query plugins are invoked before a query operation is sent to any of the Sources. This is an
opportunity to take any action on the query, including but not limited to:

* validation.

* logging.

* auditing.

* optimization.

* security filtering.
4.1.7.1. Available Pre-Query Plugins
Security Logging Plugin
Logs operations to the security log.
4.1.8. Pre-Federated-Query Plugins

Pre-federated-query plugins are invoked before a federated query operation is sent to any of
the Sources. This is an opportunity to take any action on the query, including but not limited to:

* validation.
* logging.
* auditing.
* optimization.
* security filtering.
4.1.8.1. Available Pre-Federated-Query Plugins

Security Logging Plugin

Logs operations to the security log.

Tags Filter Plugin

Updates queries without filters.

4.1.9. Post-Query Plugins

Post-query plugins are invoked after a query has been executed successfully, but before the response is
returned to the endpoint. This is an opportunity to take any action on the query response, including

60

developing.pdf#_security_logging_plugin
developing.pdf#_security_logging_plugin

but not limited to:
* logging.
 auditing.
* security filtering/redaction.

* deduplication.

4.1.9.1. Available Post-Query Plugins

JPEG2000 Thumbnail Converter

Creates thumbnails for jpeg2000 images.

Metacard Resource Size Plugin

Updates the resource size attribute of a metacard.
Security Logging Plugin

Logs operations to the security log.
4.1.10. Post-Federated-Query Plugins

Post-federated-query plugins are invoked after a federated query has been executed successfully, but
before the response is returned to the endpoint. This is an opportunity to take any action on the query
response, including but not limited to:

* logging.

* auditing.

* security filtering/redaction.

* deduplication.

4.1.10.1. Available Post-Federated-Query Plugins
Security Logging Plugin

Logs operations to the security log.
4.1.11. Pre-Resource Plugins

Pre-Resource plugins are invoked before a request to retrieve a resource is sent to a Source. This is an
opportunity to take any action on the request, including but not limited to:

» validation.

* logging.

 auditing.

61

developing.pdf#_security_logging_plugin
developing.pdf#_security_logging_plugin

* optimization.
* security filtering.
4.1.11.1. Available Pre-Resource Plugins
Security Logging Plugin
Logs operations to the security log.
4.1.12. Post-Resource Plugins

Post-resource plugins are invoked after a resource has been retrieved, but before it is returned to the
endpoint. This is an opportunity to take any action on the response, including but not limited to:

* logging.
* auditing.
* security filtering/redaction.
4.1.12.1. Available Post-Resource Plugins
Security Logging Plugin
Logs operations to the security log.
4.1.13. Pre-Create Storage Plugins

Pre-Create storage plugins are invoked immediately before an item is created in the content repository.

4.1.13.1. Available Pre-Create Storage Plugins

Checksum Plugin

Creates a unique checksum for ingested resources.
Security Logging Plugin

Logs operations to the security log.
4.1.14. Post-Create Storage Plugins

Post-Create storage plugins are invoked immediately after an item is created in the content repository.

4.1.14.1. Available Post-Create Storage Plugins

Security Logging Plugin

Logs operations to the security log.

Video Thumbnail Plugin

Generates thumbnails for video files.

62

developing.pdf#_security_logging_plugin
developing.pdf#_security_logging_plugin
developing.pdf#_security_logging_plugin
developing.pdf#_security_logging_plugin

4.1.15. Pre-Update Storage Plugins

Pre-Update storage plugins are invoked immediately before an item is updated in the content
repository.

4.1.15.1. Available Pre-Update Storage Plugins

Checksum Plugin

Creates a unique checksum for ingested resources.
Security Logging Plugin

Logs operations to the security log.
4.1.16. Post-Update Storage Plugins

Post-Update storage plugins are invoked immediately after an item is updated in the content
repository.

4.1.16.1. Available Post-Update Storage Plugins

Security Logging Plugin

Logs operations to the security log.
Video Thumbnail Plugin

Generates thumbnails for video files.
4.1.17. Pre-Subscription Plugins

Pre-subscription plugins are invoked before a Subscription is activated by an Event Processor. This is
an opportunity to take any action on the Subscription, including but not limited to:

* validation.

* logging.

* auditing.

* optimization.

* security filtering.

4.1.17.1. Available Pre-Subscription Plugins

None.

4.1.18. Pre-Delivery Plugins

Pre-delivery plugins are invoked before a Delivery Method is invoked on a Subscription. This is an

63

developing.pdf#_security_logging_plugin
developing.pdf#_security_logging_plugin

opportunity to take any action before event delivery, including but not limited to:

* logging.
 auditing.
* security filtering/redaction.
4.1.18.1. Available Pre-Delivery Plugins

None.

4.2. Catalog Plugin Details

Installation and configuration details listed by plugin name.

4.2.1. Catalog Backup Plugin

The Catalog Backup Plugin is used to enable data backup of the catalog and the metacards it contains.

Catalog Backup Plugin Considerations
WARNING)))))
Using this plugin may impact performance negatively.

4.2.1.1. Installing the Catalog Backup Plugin

The Catalog Backup Plugin is installed by default with a standard installation in the Catalog
application.

4.2.1.2. Configuring the Catalog Backup Plugin

To configure the Catalog Backup Plugin:

1. Navigate to the Admin Console.
2. Select Catalog application.
3. Select Configuration tab.

4. Select Backup Post-Ingest Plugin.

See Catalog Backup Plugin configurations for all possible configurations.

4.2.1.3. Usage Limitations of the Catalog Backup Plugin

* May affect performance.
* Must be installed prior to ingesting any content.

* Once enabled, disabling may cause incomplete backups.

64

reference.pdf#_ddf.catalog.backup.CatalogBackupPlugin

4.2.2. Catalog Policy Plugin

The Catalog Policy Plugin configures the attributes required for users to perform Create, Read, Update,
and Delete operations on the catalog.

4.2.2.1. Installing the Catalog Policy Plugin

The Catalog Policy Plugin is installed by default with a standard installation in the Catalog application.

4.2.2.2. Configuring the Catalog Policy Plugin

To configure the Catalog Policy Plugin:

1. Navigate to the Admin Console.
2. Select Catalog application.
3. Select Configuration tab.

4. Select Catalog Policy Plugin.

See Catalog Policy Plugin configurations for all possible configurations.

4.2.3. Checksum Plugin

The Checksum plugin creates a unique checksum for resources input into the system to identify
updated content.

4.2.3.1. Installing the Checksum Plugin

The Checksum is installed by default with a standard installation in the Catalog application.

4.2.3.2. Configuring the Checksum Plugin

The Checksum Plugin has no configurable properties.

4.2.4. Client Info Plugin

The client info plugin injects request-specific network information into request properties, such as
Remote IP Address, Remote Host Name, Servlet Scheme, and Servlet Context.

4.2.4.1. Related Components to the Client Info Plugin

e Client info filter

* Metacard Ingest Network Plugin

65

reference.pdf#_org.codice.ddf.catalog.security.CatalogPolicy

4.2.4.2. Installing the Client Info Plugin

The Client Info Plugin is installed by default with a standard installation in the Catalog application.

4.2.4.3. Configuring the Client Info Plugin

The Client Info Plugin has no configurable properties.

4.2.5. Content URI Access Plugin

The Content URI Access Plugin prevents a Metacard’s resource URI from being overridden by an
incoming UpdateRequest.

4.2.5.1. Installing the Content URI Access Plugin

The Content URI Access Plugin is installed by default with a standard installation in the Catalog
application.

4.2.5.2. Configuring the Content URI Access Plugin

The Content URI Access Plugin has no configurable properties.

4.2.6. Event Processor

The Event Processor creates, updates, and deletes subscriptions for event notification.
These subscriptions optionally specify a filter criteria so that only events of interest to the subscriber
are posted for notification.

As metacards are created, updated, and deleted, the Catalog’s Event Processor is invoked (as a post-
ingest plugin) for each of these events. The Event Processor applies the filter criteria for each
registered subscription to each of these ingest events to determine if they match the criteria.

For more information on creating subscriptions, see Creating a Subscription.

4.2.6.1. Installing the Event Processor

The Event Processor is installed by default with a standard installation in the Catalog application.

4.2.6.2. Configuring the Event Processor

The Event Processor has no configurable properties.

66

documentation.pdf#_creating_a_subscription

4.2.6.3. Usage Limitations of the Event Processor

The Standard Event processor currently broadcasts federated events and should not. It should only
broadcast events that were generated locally, all other events should be dropped. See DDF-3151 for
status.

4.2.7. Expiration Date Pre-Ingest Plugin

The Expiration Date plugin adds or updates expiration dates which can be used later for archiving old
data.

4.2.7.1. Installing the Expiration Date Pre-Ingest Plugin

The Expiration Date Pre-Ingest Plugin is not installed by default with a standard installation. To install:

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Select the Configuration tab.

4. Select the Expiration Data Pre-Ingest Plugin.

4.2.7.2. Configuring the Expiration Date Pre-Ingest Plugin

To configure the Expiration Date Pre-Ingest Plugin:

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Select the Configuration tab.

4. Select the Expiration Date Pre-Ingest Plugin.

See Expiration Date Plugin configurations for all possible configurations.

4.2.8. Filter Plugin
The Filter Plugin performs filtering on query responses as they pass through the framework.

Each metacard result can contain security attributes that are pulled from the metadata record after
being processed by a PolicyPlugin that populates this attribute. The security attribute is a Map
containing a set of keys that map to lists of values. The metacard is then processed by a filter plugin
that creates a KeyValueCollectionPermission from the metacard’s security attribute. This permission is
then checked against the user subject to determine if the subject has the correct claims to view that
metacard. The decision to filter the metacard eventually relies on the installed Policy Decision Point

67

https://codice.atlassian.net/browse/DDF-3151
reference.pdf#_org.codice.ddf.catalog.plugin.expiration.ExpirationDatePlugin

(PDP). The PDP that is being used returns a decision, and the metacard will either be filtered or
allowed to pass through.

How a metacard gets filtered is left up to any number of FilterStrategy implementations that might be
installed. Each FilterStrategy will return a result to the filter plugin that says whether or not it was able
to process the metacard, along with the metacard or response itself. This allows a metacard or entire
response to be partially filtered to allow some data to pass back to the requester. This could also
include filtering any resources sent back to a requester.

The security attributes populated on the metacard are completely dependent on the type of the
metacard. Each type of metacard must have its own PolicyPlugin that reads the metadata being
returned and then returns the appropriate attributes.

Example (represented as simple XML for ease of understanding):

<metacard>
<security>
<map>
<entry assertedAttribute1="A,B" />
<entry assertedAttribute2="X,Y" />
<entry assertedAttribute3="USA,GBR" />
<entry assertedAttribute4="USA,AUS" />
</map>
</security>
</metacard>

<user>
<claim name="subjectAttributel">
<value>A</value>
<value>B</value>
</claim>
<claim name="subjectAttribute2">
<value>X</value>
<value>Y</value>
</claim>
<claim name="subjectAttribute3">
<value>USA</value>
</claim>
<claim name="subjectAttribute4">
<value>USA</value>
</claim>
</user>

In the above example, the user’s claims are represented very simply and are similar to how they would
actually appear in a SAML 2 assertion. Each of these user (or subject) claims will be converted to a

68

KeyValuePermission object. These permission objects will be implied against the permission object
generated from the metacard record. In this particular case, the metacard might be allowed if the
policy is configured appropriately because all of the permissions line up correctly.

4.2.8.1. Installing the Filter Plugin

The Filter Plugin is installed by default with a standard installation in the Catalog application.

4.2.8.2. Configuring the Filter Plugin

The Filter Plugin has no configurable properties.

4.2.9. GeoCoder Plugin

The GeoCoder Plugin is a pre-ingest plugin that is responsible for populating the Metacard’s
Location.COUNTRY_CODE attribute if the Metacard has an associated location. If there is a valid country
code for the Metacard, it will be in ISO 3166-1 alpha-3 format. If the metacard’s country code is already
populated, the plugin will not override it. The GeoCoder relies on either the WebService or Offline
Gazetteer to retrieve country code information.

For a polygon or polygons, this plugin takes the center point of the bounding box

WARNING .
to assign the country code.

4.2.9.1. Installing the GeoCoder Plugin

The GeoCoder Plugin is installed by default with the Spatial application, when the WebService or
Offline Gazetteer is started.

4.2.9.2. Configuring the GeoCoder Plugin

To configure the GeoCoder Plugin:

1. Navigate to the Admin Console.
2. Select Spatial application.
3. Select Configuration tab.

4. Select GeoCoder Plugin.
These are the available configurations:

See GeoCoder Plugin configurations for all possible configurations.

69

reference.pdf#_offline_gazetteer_service
reference.pdf#_offline_gazetteer_service
reference.pdf#_org.codice.ddf.spatial.geocoding.plugin.GeoCoderPlugin

4.2.10. Historian Policy Plugin

The Historian Policy Plugin protects metacard history from being edited or deleted by users without
the history role (a http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role of system-history).

4.2.10.1. Installing the Historian Policy Plugin

The Historian is installed by default with a standard installation in the Catalog application.

4.2.10.2. Configuring the Historian Policy Plugin

The Historian Policy Plugin has no configurable properties.

4.2.11. JPEG2000 Thumbnail Converter

The JPEG2000 Thumbnail converter creates thumbnails from images ingested in jpeg2000 format.

4.2.11.1. Installing the JPEG2000 Thumbnail Converter

The JPEG2000 Thumbnail Converter is installed by default with a standard installation in the Catalog
application.

4.2.11.2. Configuring the JPEG2000 Thumbnail Converter

The JPEG2000 Thumbnail Converter has no configurable properties.

4.2.12. Metacard Attribute Security Policy Plugin

The Metacard Attribute Security Policy Plugin combines existing metacard attributes to make new
attributes and adds them to the metacard. For example, if a metacard has two attributes,
sourceattributel and sourceattribute2, the values of the two attributes could be combined into a new
attribute, destinationattributel. The sourceattributel and sourceattribute? are the source attributes
and destinationattributel is the destination attribute.

There are two way to combine the values of source attributes. The first, and most common, is to take
all of the attribute values and put them together. This is called the union. For example, if the source
attributes sourceattributel and sourceattribute2 had the values:

sourceattributel = MASK, VESSEL

sourceattribute? = WIRE, SACK, MASK
...the union would result in the new attribute destinationattribute:

destinationattributel = MASK, VESSEL, WIRE, SACK

70

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/role

The other way to combine attributes is use the values common to all of the attributes. This is called the
intersection. Using our previous example, the intersection of sourceattributel and sourceattribute?
would create the new attribute destinationattribute

destinationattributel = MASK
because only MASK is common to all of the source attributes.

The policy plugin could also be used to rename attributes. If there is only one source attribute, and the
combination policy is union, then the attribute’s values are effectively renamed to the destination
attribute.

4.2.12.1. Installing the Metacard Attribute Security Policy Plugin

The Metacard Attribute Security Policy Plugin is installed by default with a standard installation in the
Catalog application.

See Metacard Attribute Security Policy Plugin configurations for all possible configurations.

4.2.13. Metacard Backup File Storage Provider

The Metacard Backup File Storage Provider is a storage provider that will store backed-up metacards
in a specified file system location.

4.2.13.1. Installing the Metacard Backup File Storage Provider

To install the Metacard Backup File Storage Provider

1. Navigate to the Admin Console.
2. Select the System tab.
3. Select the Features tab.

4. Install the catalog-metacard-backup-filestorage feature.

4.2.13.2. Configuring the Metacard Backup File Storage Provider

To configure the Metacard Backup File Storage Provider

1. Navigate to the Admin Console.
2. Select Catalog application.
3. Select Configuration tab.

4. Select Metacard Backup File Storage Provider.

See Metacard Backup File Storage Provider configurations for all possible configurations.

71

reference.pdf#_org.codice.ddf.catalog.security.policy.metacard.MetacardAttributeSecurityPolicyPlugin
reference.pdf#_Metacard_File_Storage_Route

4.2.14. Metacard Backup S3 Storage Provider

The Metacard Backup S3 Storage Provider is a storage provider that will store backed up metacards in
the specified S3 bucket and key.

4.2.14.1. Installing the Metacard S3 File Storage Provider

To install the Metacard Backup File Storage Provider

1. Navigate to the System tab.
2. Select the Features tab.

3. Install the catalog-metacard-backup-s3storage feature.

4.2.14.2. Configuring the Metacard S3 File Storage Provider

To configure the Metacard Backup S3 Storage Provider:

1. Navigate to the Admin Console.
2. Select Catalog application.
3. Select Configuration tab.

4. Select Metacard Backup S3 Storage Provider.

See Metacard Backup S3 Storage Provider configurations for all possible configurations.

4.2.15. Metacard Groomer

The Metacard Groomer Pre-Ingest plugin makes modifications to CreateRequest and UpdateRequest
metacards.

Use this pre-ingest plugin as a convenience to apply basic rules for your metacards.
This plugin makes the following modifications when metacards are in a CreateRequest:

* Overwrites the Metacard.ID field with a generated, unique, 32 character hexadecimal value if
missing or if the resource URI is not a catalog resource URI.

Sets Metacard.CREATED to the current time stamp if not already set.
» Sets Metacard.MODIFIED to the current time stamp if not already set.

* Sets Core.METACARD_CREATED to the current time stamp if not present.

Sets Core.METACARD_MODIFIED to the current time stamp.

In an UpdateRequest, the same operations are performed as a CreateRequest, except:

72

reference.pdf#_Metacard_S3_Storage_Route

* If no value is provided for Metacard.ID in the new metacard, it will be set using the UpdateRequest ID
if applicable.

4.2.15.1. Installing the Metacard Groomer

The Metacard Groomer is included in the catalog-core-plugins feature. It is not recommended to
uninstall this feature.

4.2.15.2. Configuring the Metacard Groomer

The Metacard Groomer has no configurable properties.

4.2.16. Metacard Ingest Network Plugin

The Metacard Ingest Network Plugin allows the conditional insertion of new attributes on metacards
during ingest based on network information from the ingest request; including IP address and
hostname.

For the extent of this section, a 'rule' will refer to a configured, single instance of this plugin.

4.2.16.1. Related Components to the Metacard Ingest Network Plugin

* Client Info Plugin

4.2.16.2. Installing the Metacard Ingest Network Plugin

The Metacard Ingest Network Plugin is installed by default during a standard installation in the
Catalog application.

4.2.16.3. Configuring the Metacard Ingest Network Plugin

To configure the Metacard Ingest Network Plugin:

* Navigate to the Admin Console.

Select the Catalog application.

Select the Configuration tab.

Select the label Metacard Ingest Network Plugin to setup a network rule.
See Metacard Ingest Network Plugin configurations for all possible configurations.

Multiple instances of the plugin can be configured by clicking on its configuration title within the
configuration tab of the Catalog app. Each instance represents a conditional statement, or a 'rule’, that
gets evaluated for each ingest request. For any request that meets the configured criteria of a rule, that
rule will attempt to transform its list of key-value pairs to become new attributes on all metacards in
that request.

73

reference.pdf#_org.codice.ddf.catalog.plugin.metacard.MetacardIngestNetworkPlugin

The rule is divided into two fields: "Criteria" and "Expected Value". The "Criteria" field features a drop-
down list containing the four elements for which equality can be tested:

* IP Address of where the ingest request came from

» Host Name of where the ingest request came from

* Scheme that the ingest request arrived on, for example, http vs https

* Context Path that the ingest request arrived on, for example, /services/catalog
In order for a rule to evaluate to true and the attributes be applied, the value in the "Expected Value"
field must be an exact match to the actual value of the selected criteria. For example, if the selected

criteria is "IP Address" with an expected value of "192.168.0.1", the rule only evaluates to true for ingest
requests coming from "192.168.0.1" and nowhere else.

Check for IPv6

IMPORTANT Verify your system’s IP configuration. Rules using "IP Address" may need to be
written in IPv6 format.

The key-value pairs within each rule should take the following form: "key = value" where the "key" is
the name of the attribute and the "value" is the value assigned to that attribute. Whitespace is ignored
unless it is within the key or value. Multi-valued attributes can be expressed in comma-separated
format if necessary.

Examples of Valid Attribute Assignments

contact.contributor-name = John Doe
contact.contributor-email = john.doe@example.net
language = English

language = English, French, German
security.access-groups = SJ202, SR 101, 1S2201

4.2.16.3.1. Useful Attributes

The following table provides some useful attributes that may commonly be set by this plugin:

Table 17. Useful Attributes

Attribute Name Expected Format Multi-Valued
expiration ISO DateTime no
description Any String no
metacard.owner Any String no

language Any String yes
security.access-groups Any String yes
security.access-individuals Any String yes

74

4.2.16.4. Usage Limitations of the Metacard Ingest Network Plugin

* This plugin only works for ingest (create requests) performed over a network; data ingested via
command line does not get processed by this plugin.

* Any attribute that is already set on the metacard will not be overwritten by the plugin.

* The order of execution is not guaranteed. For any rule configuration where two or more rules add
different values for the same attribute, it is undefined what the final value for that attribute will be
in the case where more than one of those rules evaluates to true.

4.2.17. Metacard Resource Size Plugin

This post-query plugin updates the resource size attribute of each metacard in the query results
if there is a cached file for the resource and it has a size greater than zero; otherwise, the resource size
is unmodified and the original result is returned.

Use this post-query plugin as a convenience to return query results with accurate resource sizes for
cached products.

4.2.17.1. Installing the Metacard Resource Size Plugin

The Metacard Resource Size Plugin is installed by default with a standard installation.

4.2.17.2. Configuring the Metacard Resource Size Plugin

The Metacard Resource Size Plugin has no configurable properties.

4.2.18. Metacard Validity Filter Plugin

The Metacard Validity Filter Plugin determines whether metacards with validation errors or warnings
are filtered from query results.

4.2.18.1. Related Components to the Metacard Validity Filter Plugin

* Metacard Validity Marker.

4.2.18.2. Installing the Metacard Validity Filter Plugin

The Metacard Validity Filter Plugin is installed by default with a standard installation in the Catalog
application.

75

4.2.19. Metacard Validity Marker

The Metacard Validity Marker Pre-Ingest plugin modifies the metacards contained in create and
update requests.

The plugin runs each metacard in the CreateRequest and UpdateRequest against each registered
MetacardValidator service.

This plugin can make it seem like ingested resources are not successfully ingested if a
user does not have permissions to access invalid metacards. If an ingest did not fail,

NOTE there are no errors in the ingest log, but the expected results do not show up after a
query, verify either that the ingested data is valid or that the Metacard Validity Filter
Plugin is configured to show warnings and/or errors.

4.2.19.1. Related Components to the Metacard Validity Marker

* Metacard Validity Filter Plugin.

4.2.19.2. Installing Metacard Validity Marker

This plugin is installed by default with a standard installation in the Catalog application.

4.2.19.3. Configuring Metacard Validity Marker

See Metacard Validity Marker Plugin configurations for all possible configurations.

4.2.19.4. Using Metacard Validity Marker

Use this pre-ingest plugin to validate metacards against metacard validators, which can check schemas,
schematron, or any other logic.

4.2.20. Operation Plugin

The operation plugin validates the subject’s security attributes to ensure they are adequate to perform
the operation.

4.2.20.1. Installing the Operation Plugin

The Operation Plugin is installed by default with a standard installation in the Catalog application.

4.2.20.2. Configuring the Operation Plugin

The Operation Plugin has no configurable properties.

76

reference.pdf#_ddf.catalog.metacard.validation.MetacardValidityMarkerPlugin

4.2.21. Point of Contact Policy Plugin

The Point of Contact Policy Plugin is a PreUpdate plugin that will check if the point-of-contact attribute
has changed. If it does, then it adds a policy to that metacard’s policy map that cannot be implied. This
will deny such an update request, which essentially makes the point-of-contact attribute read-only.

4.2.21.1. Related Components to Point of Contact Policy Plugin

Point of Contact Update Plugin

4.2.21.2. Installing the Point of Contact Policy Plugin

The Point of Contact Policy Plugin is installed by default with a standard installation in the Catalog
application.

4.2.21.3. Configuring the Point of Contact Policy Plugin

The Point of Contact Policy Plugin has no configurable properties.

4.2.22. Processing Post-Ingest Plugin

The Processing Post Ingest Plugin is responsible for submitting catalog Create, Update, and Delete
(CUD) requests to the Processing Framework.

4.2.22.1. Related Components to Processing Post-Ingest Plugin

None.

4.2.22.2. Installing the Processing Post-Ingest Plugin

The Processing Post-Ingest Plugin is not installed by default with a standard installation, but is installed
by default when the in-memory Processing Framework is installed.

4.2.22.3. Configuring the Processing Post-Ingest Plugin

The Processing Post-Ingest Plugin has no configurable properties.

4.2.23. Resource URI Policy Plugin

The Resource URI Policy Plugin configures the attributes required for users to set the resource URI
when creating a metacard or alter the resource URI when updating an existing metacard in the catalog.

77

4.2.23.1. Installing the Resource URI Policy Plugin

The Resource URI Policy Plugin is installed by default with a standard installation in the Catalog
application.

4.2.23.2. Configuring the Resource URI Policy Plugin

To configure the Resource URI Policy Plugin:

1. Navigate to the Admin Console.
2. Select Catalog application.
3. Select Configuration tab.

4. Select Resource URI Policy Plugin.

See Resource URI Policy Plugin configurations for all possible configurations.

4.2.24. Security Audit Plugin

The Security Audit Plugin is used to allow the auditing of specific metacard attributes. Any time a
metacard attribute listed in the configuration is updated, a log will be generated in the security log.

4.2.24.1. Installing the Security Audit Plugin

The Security Audit Plugin is installed by default with a standard installation in the Catalog application.

4.2.25. Security Logging Plugin

The Security Logging Plugin logs operations to the security log.

4.2.25.1. Installing Security Logging Plugin

The Security Logging Plugin is installed by default in a standard installation in the Security application.

4.2.25.2. Enhancing the Security Log

The security log contains attributes related to the subject acting on the system. To add additional
attributes related to the subject to the logs, append the attribute’s key to the comma separated values
assigned to security.logger.extra_attributes in /etc/custom.system.properties.

78

reference.pdf#_org.codice.ddf.catalog.security.ResourceUriPolicy

4.2.26. Security Plugin

The Security Plugin identifies the subject for an operation.

4.2.26.1. Installing the Security Plugin

The Security Plugin is installed by default with a standard installation in the Catalog application.

4.2.26.2. Configuring the Security Plugin

The Security Plugin has no configurable properties.

4.2.27. Tags Filter Plugin

The Tags Filter Plugin updates queries without filters for tags, and adds a default tag of resource. For
backwards compatibility, a filter will also be added to include metacards without any tags attribute.

4.2.27.1. Related Components to Tags Filter Plugin

None.

4.2.27.2. Installing the Tags Filter Plugin

The Tags Filter Plugin is installed by default with a standard installation in the Catalog application.

4.2.27.3. Configuring the Tags Filter Plugin

The Tags Filter Plugin has no configurable properties.

4.2.28. Video Thumbnail Plugin

The Video Thumbnail Plugin provides the ability to generate thumbnails for video files stored in the
Content Repository.

It is an implementation of both the PostCreateStoragePlugin and PostUpdateStoragePlugin interfaces.
When installed, it is invoked by the Catalog Framework immediately after a content item has been
created or updated by the Storage Provider.

This plugin uses a custom 32-bit LGPL build of FFmpeg (a video processing program) to generate
thumbnails. When this plugin is installed, it places the FFmpeg executable appropriate for the current
operating system in <DDF_HOME>/bin_third_party/ffmpeg. When invoked, this plugin runs the FFmpeg
binary in a separate process to generate the thumbnail. The <DDF_HOME>/bin_third_party/ffmpeg
directory is deleted when the plugin is uninstalled.

79

https://ffmpeg.org/

NOTE Prebuilt FFmpeg binaries are provided for Linux, Mac, and Windows only.

4.2.28.1. Installing the Video Thumbnail Plugin

The Video Thumbnail Plugin is installed by default with a standard installation in the Catalog
application.

4.2.28.2. Configuring the Video Thumbnail Plugin

To configure the Video Thumbnail Plugin:

1. Navigate to the Admin Console.
2. Select the Catalog application.
3. Select the Configuration tab.

4. Select the Video Thumbnail Plugin.

See Video Thumbnail Plugin configurations for all possible configurations.

4.2.29. Workspace Access Plugin

The Workspace Access Plugin prevents non-owner users from changing workspace permissions.

4.2.29.1. Related Components to The Workspace Access Plugin
» Workspace Sharing Policy Plugin.
» Workspace Pre-Ingest Plugin.
* Workspace Extension.

4.2.29.2. Installing the Workspace Access Plugin

The Workspace Access Plugin is installed by default with a standard installation in the Catalog
application.

4.2.29.3. Configuring the Workspace Access Plugin

The Workspace Access Plugin has no configurable properties.

4.2.30. Workspace Pre-Ingest Plugin

The Workspace Pre-Ingest Plugin verifies that a workspace has an associated email to enable sharing
and assigns that email as "owner".

80

reference.pdf#_org.codice.ddf.catalog.content.plugin.video.VideoThumbnailPlugin

4.2.30.1. Related Components to The Workspace Pre-Ingest Plugin

» Workspace Sharing Policy Plugin.
* Workspace Access Plugin.

* Workspace Extension.

4.2.30.2. Installing the Workspace Pre-Ingest Plugin

The Workspace Pre-Ingest Plugin is installed by default with a standard installation in the Catalog
application.

4.2.30.3. Configuring the Workspace Pre-Ingest Plugin

The Workspace Pre-Ingest Plugin has no configurable properties.

4.2.31. Workspace Sharing Policy Plugin

The Workspace Sharing Policy Plugin collects attributes for a workspace to identify the appropriate
policy to apply to allow sharing.

4.2.31.1. Related Components to The Workspace Sharing Policy Plugin

» Workspace Access Plugin.
» Workspace Pre-Ingest Plugin.

* Workspace Extension.

4.2.31.2. Installing the Workspace Sharing Policy Plugin

The Workspace Sharing Policy Plugin is installed by default with a standard installation in the Catalog
application.

4.2.31.3. Configuring the Workspace Sharing Policy Plugin

The Workspace Sharing Policy Plugin has no configurable properties.

4.2.32. XML Attribute Security Policy Plugin

The XML Attribute Security Policy Plugin parses XML metadata contained within a metacard for
security attributes on any number of XML elements in the metadata. The configuration for the plugin
contains one field for setting the XML elements that will be parsed for security attributes and the other
two configurations contain the XML attributes that will be pulled off of those elements. The Security
Attributes (union) field will compute the union of values for each attribute defined and the Security

81

Attributes (intersection) field will compute the intersection of values for each attribute defined.

4.2.32.1. Installing the XML Attribute Security Policy Plugin

The XML Attribute Security Policy Plugin is installed by default with a standard installation in the
Security application.

5. Data

Endpoints
Operations
Transformers Federation Sources
Catalog Framework
Eventing
Catalog
Plugins Resources

Catalog Provider

Storage Provider

Catalog Architecture Diagram: Data

The Catalog stores and translates Metadata, which can be transformed into many data formats, shared,
and queried. The primary form of this metadata is the metacard. A Metacardis a container for
metadata. CatalogProviders accept Metacards as input for ingest, and Sources search for metadata and
return matching Results that include Metacards.

5.1. Metacards

A metacard is a single instance of metadata in the Catalog (an instance of a metacard type) which
generally contains general information about the resource, such as the title of the resource, the
resource’s geo-location, the date the resource was created and/or modified, the owner or producer,
and/or the security classification.

5.1.1. Metacard Type

A metacard type indicates the attributes available for a particular metacard. It is a model used to

82

define the attributes of a metacard, much like a schema.

A metacard type indicates the attributes available for a particular type of data. For example, an image
may have different attributes than a PDF document, so each could be defined to have their own
metacard type.

5.1.1.1. Default Metacard Type and Attributes

Most metacards within the system are created using the default metacard type or a metacard type
based on the default type. The default metacard type of the system can be programmatically retrieved
by calling ddf.catalog.data.impl.MetacardImpl.BASIC_METACARD. The name of the default
MetacardType can be retrieved from ddf.catalog.data.MetacardType.DEFAULT_METACARD_TYPE_NAME.

The default metacard type has the following required attributes. Though the following attributes are
required on all metacard types, setting their values is optional except for ID.

Core Attributes

It is highly recommended when referencing a default attribute name to use the
ddf.catalog.data.types.* interface constants whenever possible. Mapping to a

NOTE normalized taxonomy allows for higher quality transformations between different
formats and for improved federation. This neutral profile facilitates improved search
and discovery across disparate data types.

Every Source should at the very least return an ID attribute according to Catalog
WARNING APL. Other fields may or may not be applicable, but a unique ID must be returned
by a source.

5.1.1.2. Extensible Metacards

Metacard extensibility is achieved by creating a new MetacardType that supports attributes in addition
to the required attributes listed above.

Required attributes must be the base of all extensible metacard types.

Not all Catalog Providers support extensible metacards. Nevertheless, each
Catalog Provider should at least have support for the default MetacardType; i.e., it
should be able to store and query on the attributes and attribute formats specified
by the default metacard type. Catalog providers are neither expected nor required
to store attributes that are not in a given metacard’s type.

WARNING

Consult the documentation of the Catalog Provider in use for more information on
its support of extensible metacards.

Often, the BASIC_METACARD MetacardType does not provide all the functionality or attributes necessary for
a specific task. For performance or convenience purposes, it may be necessary to create custom

83

metadata.pdf#_core_attributes
introduction.pdf#_introduction_to_federation_and_sources
managing.pdf#_catalog_providers

attributes even if others will not be aware of those attributes. One example could be if a user wanted to
optimize a search for a date field that did not fit the definition of CREATED, MODIFIED, EXPIRATION,
or EFFECTIVE. The user could create an additional java.util.Date attribute in order to query the
attribute separately.

Metacard objects are extensible because they allow clients to store and retrieve standard and custom
key/value Attributes from the Metacard. All Metacards must return a MetacardType object that
includes an AttributeDescriptor for each Attribute, indicating it’'s key and value type.
AttributeType support is limited to those types defined by the Catalog.

New MetacardType implementations can be made by implementing the MetacardType interface.

5.1.2. Metacard Type Registry

The MetacardTypeRegistry is experimental. While this component has been tested
WARNING and is functional, it may change as more information is gathered about what is
needed and as it is used in more scenarios.

The MetacardTypeRegistry allows DDF components, primarily catalog providers and sources, to make
available the MetacardTypes that they support. It maintains a list of all supported MetacardTypes in the
CatalogFramework, so that other components such as Endpoints, Plugins, and Transformers can make
use of those MetacardTypes. The MetacardType is essential for a component in the CatalogFramework to
understand how it should interpret a metacard by knowing what attributes are available in that
metacard.

For example, an endpoint receiving incoming metadata can perform a lookup in the
MetacardTypeRegistry to find a corresponding MetacardType. The discovered MetacardType will then be
used to help the endpoint populate a metacard based on the specified attributes in the MetacardType.
By doing this, all the incoming metadata elements can then be available for processing, cataloging, and
searching by the rest of the CatalogFramework.

MetacardTypes should be registered with the MetacardTypeRegistry. The MetacardTypeRegistry makes
those MetacardTypes available to other DDF (CatalogFramework components. Other components that need
to know how to interpret metadata or metacards should look up the appropriate MetacardType from the
registry. By having these MetacardTypes available to the CatalogFramework, these components can be
aware of the custom attributes.

The MetacardTypeRegistry is accessible as an OSGi service. The following blueprint snippet shows how
to inject that service into another component:

84

documentation.pdf#_endpoints

MetacardTypeRegistry Service Injection

<bean id="sampleComponent" class="ddf.catalog.SampleComponent">
<argument ref="metacardTypeRegistry" />
</bean>

<!-- Access MetacardTypeRegistry -->
<reference id="metacardTypeRegistry" interface="ddf.catalog.data.MetacardTypeRegistry"/>

The reference to this service can then be used to register new MetacardTypes or to lookup existing ones.

Typically, new MetacardTypes will be registered by CatalogProviders or sources indicating they know
how to persist, index, and query attributes from that type. Typically, Endpoints or InputTransformers
will use the lookup functionality to access a MetacardType based on a parameter in the incoming
metadata. Once the appropriate MetacardType is discovered and obtained from the registry, the
component will know how to translate incoming raw metadata into a DDF Metacard.

5.1.3. Attributes

An attribute is a single field of a metacard, an instance of an attribute type. Attributes are typically
indexed for searching by a source or catalog provider.

5.1.3.1. Attribute Types

An attribute type indicates the attribute format of the value stored as an attribute. It is a model for an
attribute.

5.1.3.1.1. Attribute Format

An enumeration of attribute formats are available in the catalog. Only these attribute formats may be
used.

Table 18. Attribute Formats

AttributeFormat Description

BINARY Attributes of this attribute format must have a
value that is a Java byte[] and
AttributeType.getBinding() should return
Class<Array>of byte.

BOOLEAN Attributes of this attribute format must have a
value that is a Java boolean.

DATE Attributes of this attribute format must have a
value that is a Java date.

DOUBLE Attributes of this attribute format must have a
value that is a Java double.

85

AttributeFormat Description

FLOAT Attributes of this attribute format must have a
value that is a Java float.

GEOMETRY Attributes of this attribute format must have a
value that is a WKT-formatted Java string.

INTEGER Attributes of this attribute format must have a
value that is a Java integer.

LONG Attributes of this attribute format must have a
value that is a Java long.

OBJECT Attributes of this attribute format must have a
value that implements the serializable interface.

SHORT Attributes of this attribute format must have a
value that is a Java short.

STRING Attributes of this attribute format must have a
value that is a Java string and treated as plain text.

XML Attributes of this attribute format must have a
value that is a XML-formatted Java string.

5.1.3.1.2. Attribute Naming Conventions

Catalog taxonomy elements follow the naming convention of group-or-namespace.specific-term, except
for extension fields outside of the core taxonomy. These follow the naming convention of ext.group-or-
namespace.specific-term and must be namespaced. Nesting is not permitted.

5.1.3.2. Result
A single "hit" included in a query response.
A result object consists of the following:

e ametacard.
e arelevance score if included.

» distance in meters if included.

5.1.4. Creating Metacards

The quickest way to create a Metacard is to extend or construct the MetacardImpl object. MetacardImpl is
the most commonly used and extended Metacard implementation in the system because it provides a
convenient way for developers to retrieve and setAttributes without having to create a
new MetacardType (see below). MetacardImpl uses BASIC_METACARD as its MetacardType.

86

5.1.4.1. Limitations

A given developer does not have all the information necessary to programmatically interact with any
arbitrary source. Developers hoping to query custom fields from extensible Metacards of
other sources cannot easily accomplish that task with the current API. A developer cannot question a
source for all its queryable fields. A developer only knows about the MetacardTypes which that
individual developer has used or created previously.

The only exception to this limitation is the Metacard.ID field, which is required in every Metacard that is
stored in a source. A developer can always request Metacards from a source for which that developer
has the Metacard.ID value. The developer could also perform a wildcard search on the Metacard.ID field
if the source allows.

5.1.4.2. Processing Metacards

As Metacard objects are created, updated, and read throughout the Catalog, care should be taken by all
catalog components to interrogate the MetacardType to ensure that additional Attributes are processed
accordingly.

5.1.4.3. Basic Types

The Catalog includes definitions of several basic types all found in the ddf.catalog.data.BasicTypes
class.

Table 19. Basic Types

Name Type Description

BASIC_METACARD MetacardType Represents all required
Metacard Attributes.

BINARY_TYPE AttributeType A Constant for an

AttributeType with AttributeType
.AttributeFormat.BINARY.

BOOLEAN_TYPE AttributeType A Constant for an
AttributeType with AttributeType
.AttributeFormat.BOOLEAN.

DATE_TYPE AttributeType A Constant for an
AttributeType with AttributeType
.AttributeFormat.DATE.

DOUBLE_TYPE AttributeType A Constant for an
AttributeType with AttributeType
.AttributeFormat.DOUBLE.

FLOAT_TYPE AttributeType A Constant for an
AttributeType with AttributeType
.AttributeFormat.FLOAT.

87

Name
GEO_TYPE

INTEGER_TYPE

LONG_TYPE

OBJECT_TYPE

SHORT_TYPE

STRING_TYPE

XML_TYPE

6. Operations

Type
AttributeType

AttributeType

AttributeType

AttributeType

AttributeType

AttributeType

AttributeType

Description

A Constant for an
AttributeType with AttributeType
JAttributeFormat.GEOMETRY.

A Constant for an
AttributeType with AttributeType
.AttributeFormat.INTEGER.

A Constant for an
AttributeType with AttributeType
JAttributeFormat.LONG.

A Constant for an
AttributeType with AttributeType
.AttributeFormat.0BJECT.

A Constant for an
AttributeType with AttributeType
.AttributeFormat.SHORT.

A Constant for an
AttributeType with AttributeType
.AttributeFormat.STRING.

A Constant for an
AttributeType with AttributeType
AttributeFormat.XML.

Transformers

Catalog
Plugins

[

Endpoints

Data

Catalog Framework

Federation Sources

Eventing

Resources

Catalog Provider

Storage Provider

88

The Catalog provides the capability to query, create, update, and delete metacards; retrieve resources;
and retrieve information about the sources in the enterprise.

Each of these operations follow a request/response paradigm. The request is the input to the operation
and contains all of the input parameters needed by the Catalog Framework’s operation to
communicate with the Sources. The response is the output from the execution of the operation that is
returned to the client, which contains all of the data returned by the sources. For each operation there
is an associated request/response pair, e.g., the QueryRequest and QueryResponse pair for the Catalog
Framework’s query operation.

All of the request and response objects are extensible in that they can contain additional key/value
properties on each request/response. This allows additional capability to be added without changing
the Catalog API, helping to maintain backwards compatibility.

7. Resources

Endpoints

Operations Data

Transformers Federation Sources
Catalog Framework

Eventing
Catalog

Plugins Resources

Catalog Provider

Storage Provider

Resources Architecture
Resources are the data that is represented by the cataloged metadata in DDF.

Metacards are used to describe those resources through metadata. This metadata includes the time the
resource was created, the location where the resource was created, etc. A DDF Metacard contains
the getResourcelri method, which is used to locate and retrieve its corresponding resource.

89

Endpoints \
Operations

Catalog Framework ‘ Storage Plugins

‘ Transformers

Storage Provider

:

Content [DDF Component]
Repository

LEGEMND

Content Data Component Architecture

7.1. Content Item

Contentltem is the domain object populated by the Storage Provider that represents the information
about the content to be stored or content that has been stored in the Storage Provider. A ContentItem
encapsulates the content’s globally unique ID, mime type, and input stream (i.e., the actual content).
The unique ID of a ContentItem will always correspond to a Metacard ID.

7.1.1. Retrieving Resources

When a client attempts to retrieve a resource, it must provide a metacard ID or URI corresponding to a
unique resource. As mentioned above, the resource URI is obtained from aMetacard's
getResourcelri method. The CatalogFramework has three methods that can be used by clients to obtain a
resource: getEnterpriseResource, getResource, and getlLocalResource. The getEnterpriseResource method
invokes the retrieveResource method on a localResourceReader as well as all the Federated
and Connected Sources inthe DDF enterprise. The second method, getResource, takes in a source ID as a
parameter and only invokesretrieveResourceon the specified Source. The third method
invokes retrieveResource on a local ResourceReader.

The parameter for each of these methods in the CatalogFramework is a ResourceRequest. DDF includes
two implementations of ResourceRequest: ResourceRequestById and ResourceRequestByProductUri. Since
these implementations extend OperationImpl, they can pass aMap of generic properties through

90

the CatalogFramework to customize how the resource request is carried out. One example of this is
explained in the Retrieving Resource Options section below. The following is a basic example of how
to create a ResourceRequest and invoke the CatalogFramework resource retrieval methods to process the
request.

Retrieve Resource Example

Map<String, Serializable> properties = new HashMap<String, Serializable>();
properties.put("PropertyKey1", "propertyA"); //properties to customize Resource retrieval
ResourceRequestById resourceRequest = new ResourceRequestById(
"0123456789abcdef0123456789abcdef", properties); //object containing ID of Resource to be
retrieved

String sourceName = "LOCAL_SOURCE"; //the Source ID or name of the local Catalog or a
Federated Source

ResourceResponse resourceResponse; //object containing the retrieved Resource and the
request that was made to get it.

resourceResponse = catalogFramework.getResource(resourceRequest, sourceName); //Source-
based retrieve Resource request

Resource resource = resourceResponse.getResource(); //actual Resource object containing
InputStream, mime type, and Resource name

DDF.catalog.resource.ResourceReader instances can be discovered via the OSGi Service Registry. The
system can contain multiple ResourceReaders. The CatalogFramework determines which one to call based
on the scheme of the resource’s URI and what schemes the ResourceReader supports. The supported
schemes are obtained by aResourceReader's getSupportedSchemes method. As an example,
one ResourceReader may know how to handle file-based URIs with the scheme file, whereas
another ResourceReader may support HTTP-based URIs with the scheme http.

The ResourceReader or Source is responsible for locating the resource, reading its bytes, adding the
binary data to aResourceimplementation, then returning thatResourcein a ResourceResponse.
The ResourceReader or Source is also responsible for determining the Resource's name and mime type,
which it sends back in the Resource implementation.

7.1.1.1. BinaryContent

BinaryContent is an object used as a container to store translated or transformed DDF components.
Resource extends BinaryContent and includes a getName method. BinaryContent has methods to get
the InputStream, byte array, MIME type, and size of the represented binary data. An implementation
of BinaryContent (BinaryContentImpl) can be found in the Catalog API in the DDF.catalog.data package.

7.1.2. Retrieving Resource Options

Options can be specified on a retrieve resource request made through any of the supporting endpoint.
To specify an option for a retrieve resource request, the endpoint needs to first instantiate
a ResourceRequestByProductUri or a ResourceRequestById. Both of these
ResourceRequest implementations allow a Map of properties to be specified. Put the specified option into

91

the Map under the key RESOURCE_OPTION.

Retrieve Resource with Options

Map<String, Serializable> properties = new HashMap<String, Serializable>();
properties.put("RESOURCE_OPTION", "OptionA");

ResourceRequestById resourceRequest = new ResourceRequestById(
"0123456789abcdef@123456789abcdef", properties);

Depending on the support that the ResourceReader or Source provides for options, the properties
Map will be checked for the RESOURCE_OPTION entry. If that entry is found, the option will be handled. If
the ResourceReader or Source does not support options, that entry will be ignored.

A new ResourceReader or Source implementation can be created to support options in a way that is most
appropriate. Since the option is passed through the catalog framework as a property,
the ResourceReader or Source will have access to that option as long as the endpoint supports options.

7.1.3. Storing Resources

Resources are saved using aResourcellriter. DDF.catalog.resource.Resourcelriter instances can be
discovered via the OSGi Service Registry. Once retrieved, the Resourcellriter instance provides clients
with a way to store resources and get a corresponding URI that can be used to subsequently retrieve
the resource via a ResourceReader. Simply invoke either of the storeResource methods with a resource
and any potential arguments. The Resourcellriter implementation is responsible for determining
where the resource is saved and how it is saved. This allows flexibility for a resource to be saved in
any one of a variety of data stores or file systems. The following is an example of how to use a generic
implementation of Resourcelriter.

Using a ResourceWriter

InputStream inputStream = <Video_Input_Stream>; //InputStream of raw Resource data
MimeType mimeType = new MimeType("video/mpeg"); //Mime Type or content type of Resource
String name = "Facility_Video"; //Descriptive Resource name

Resource resource = new ResourceImpl(inputStream, mimeType, name);

Map<String, Object> optionalArguments = new HashMap<String, Object>();

ResourceWriter writer = new ResourceWriterImpl();

URI resourceUri; //URI that can be used to retrieve Resource

resourcelri = writer.storeResource(resource, optionalArguments); //Null can be passed in
here

7.2. Resource Components

Resource components are used when working with resources

A resource is a URI-addressable entity that is represented by a metacard.

92

Resources may exist either locally or on a remote data store.
Examples of resources include:

* NITF image

MPEG video
e Live video stream
* Audio recording

¢ Document

A resource object in DDF contains an InputStream with the binary data of the resource. It describes that
resource with a name, which could be a file name, URI, or another identifier. It also contains a mime
type or content type that a client can use to interpret the binary data.

7.3. Resource Readers

A resource reader retrieves resources associated with metacards via URIs. Each resource reader must
know how to interpret the resource’s URI and how to interact with the data store to retrieve the
resource.

There can be multiple resource readers in a Cataloginstance. The Catalog Framework selects the
appropriate resource reader based on the scheme of the resource’s URI.

In order to make a resource reader available to the Catalog Framework, it must be exported to the
OSGi Service Registry as a DDF.catalog.resource.ResourceReader.

7.3.1. URL Resource Reader

The URLResourceReader is an implementation of ResourceReader which is included in the DDF Catalog.
It obtains a resource given an http, https, or file-based URL. The URLResourceReader will connect to the
provided Resource URL and read the resource’s bytes into an InputStream.

When a resource linked using a file-based URL is in the product cache, the
URLResourceReader's rootResourceDirectories is not checked when downloading. It
is downloaded from the product cache which bypasses the URLResourceReader. For
example, if path /my/valid/path is configured in the URLResourceReader's
rootResourceDirectories and one downloads the product with resource-uri
file:///my/valid/path/product.txt and then one removes /my/valid/path from the
URLResourceReader's rootResourceDirectories configuration, the product will still be
accessible via the product cache.

WARNING

7.3.1.1. Installing the URL Resource Reader

The URLResourceReader is installed by default with a standard installation in the Catalog application.

93

file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt
file:///my/valid/path/product.txt

7.3.1.2. Configuring Permissions for the URL Resource Reader

Configuring the URL Resource Reader to retrieve files requires adding Security Manager read
permission entries for the directory containing the resources. To add the correct permission entries,
edit the file <DDF_HOME>/security/configurations.policy. In the URL Resource Reader section of the
file, add two new permission for each top-level directory that the Resource Reader needs to access. The
Resource Reader needs one permission to read the directory and another to read its contents.

Adding New Permissions

WARNING After adding permission entries, a system restart is required for them to take
effect.

grant codeBase "file:/org.apache.tika.core/catalog-core-urlresourcereader" { permission
java.io.FilePermission "<DIRECTORY_PATH>", "read"; permission java.io.FilePermission
"<OTHER_DIRECTORY_PATH>", "read"; }

Trailing slashes after <DIRECTORY_PATH> have no effect on the permissions granted. For example,
adding a permission for "${/}test${/}path” and "${/}test${/}path${/}" are equivalent. The recursive forms
"${/}test${/}path${/}-", and "${/}test${/}path${/}${/}-" are also equivalent.

7.3.1.3. Configuring the URL Resource Reader

Configure the URL Resource Reader from the Admin Console.

1. Navigate to the Admin Console.
2. Select the Catalog application.

3. Select the Configuration tab.

4. Select the URL Resource Reader.

See URL Resource Reader configurations for all possible configurations.

7.3.1.4. Using the URL Resource Reader

URLResourceReader will be used by the Catalog Framework to obtain a resource whose metacard is
cataloged in the local data store. This particular ResourceReader will be chosen by the
CatalogFramework if the requested resource’s URL has a protocol of http, https, or file.

For example, requesting a resource with the following URL will make the Catalog Framework invoke
the URLResourceReader for retrieval.

Example

file:///home/users/DDF_user/data/example.txt

If a resource was requested with the URLudp://123.45.67.89:80/SampleResourceStream,

94

reference.pdf#_ddf.catalog.resource.impl.URLResourceReader

the URLResourceReader would not be invoked.

Supported Schemes:
* http
* https
« file

If a file-based URL is passed to the URLResourceReader, that file path needs to be

NOTE
accessible by the DDF instance.

7.4. Resource Writers

A resource writer stores a resource and produces a URI that can be used for retrieval. The resource URI
uniquely locates and identifies the resource. Resource writers can interact with an underlying data
store and store the resource in the proper place. Each implementation can do this differently,
providing flexibility in the data stores used to persist the resources.

Resource Writers should be used within the Content Framework if and when implementing a custom
Storage Provider to store data. The default Storage Provider that comes with the DDF writes the
resources to the file system.

8. Queries

Clients use ddf.catalog.operation.Query objects to describe which metacards are needed from Sources.
Query objects have two major components:

 Filters

* Query Options

A Source uses the Filter criteria constraints to find the requested set of metacards within its domain of
metacards. The Query Options are used to further restrict the Filter’s set of requested metacards.

8.1. Filters

An OGC Filter is a Open Geospatial Consortium (OGC) standard & that describes a query expression in
terms of Extensible Markup Language (XML) and key-value pairs (KVP). The OGC Filter is used to
represent a query to be sent to sources and the Catalog Provider, as well as to represent a Subscription.
The OGC Filter provides support for expression processing, such as adding or dividing expressions in a
query, but that is not the intended use for DDF.

The Catalog Framework does not use the XML representation of the OGC Filter standard. DDF instead

95

introduction.pdf#_introduction_to_federation_and_sources
developing.pdf#_query_options
http://www.opengeospatial.org/standards/filter

uses the Java implementation provided by GeoTools . GeoTools provides Java equivalent classes for
OGC Filter XML elements. GeoTools originally provided the standard Java classes for the OGC Filter
Encoding 1.0 under the package name org.opengis.filter. The same package name is used today and is
currently used by DDF. Java developers do not parse or view the XML representation of a Filter
in DDF. Instead, developers use only the Java objects to complete query tasks.

Note that the ddf.catalog.operation.Query interface extends the org.opengis.filter.Filter interface,
which means that a Query object is an OGC Java Filter with Query Options.

A Query is an OGC Filter

public interface Query extends Filter

8.1.1. FilterBuilder API

To avoid the complexities of working with the Filter interface directly and implementing the DDF
Profile of the Filter specification, the Catalog includes an API, primarily in DDF.filter, to build Filters
using a fluent API.

To use the FilterBuilder API, an instance of DDF.filter.FilterBuilder should be used via the OSGi
registry. Typically, this will be injected via a dependency injection framework. Once an instance of
FilterBuilder is available, methods can be called to create and combine Filters.

The fluent API is best accessed using an IDE that supports code-completion. For additional

TIP
details, refer to the [Catalog API Javadoc].

8.1.1.1. Boolean Operators
Filters use a number of boolean operators.

FilterBuilder.allOf(Filter ')

creates a new Filter that requires all provided Filters are satisfied (Boolean AND), either from a List
or Array of Filter instances.

FilterBuilder.anyOf(Filter --+)

creates a new Filter that requires at least one of the provided Filters are satisfied (Boolean OR),
either from a List or Array of Filter instances.

FilterBuilder.not(Filter filter)
creates a new Filter that requires the provided Filter must not match (Boolean NOT).

8.1.1.2. Attribute

Filters can be based on specific attributes.

FilterBuilder.attribute(String attributeName):: begins a fluent API for creating an Attribute-based

96

http://geotools.org/

Filter, i.e., a Filter that matches on Metacards with Attributes of a particular value.

9. Action Framework

The Action Framework was designed as a way to limit dependencies between applications (apps) in a
system. For instance, a feature in an app, such as an Atom feed generator, might want to include an
external link as part of its feed’s entries. That feature does not have to be coupled to a REST endpoint to
work, nor does it have to depend on a specific implementation to get a link. In reality, the feature does
not identify how the link is generated, but it does identify whether the link works or does not work
when retrieving the intended entry’s metadata. Instead of creating its own mechanism or adding an
unrelated feature, it could use the Action Framework to query the OSGi container for any service that
can provide a link. This does two things: it allows the feature to be independent of implementations,
and it encourages reuse of common services.

The Action Framework consists of two major Java interfaces in its API:

1. ddf.action.Action

2. ddf.action.ActionProvider

Actions

Specific tasks that can be performed as services.

Action Providers

Lists of related actions that a service is capable of performing.

9.1. Action Providers

Included Action Providers
Download Resource ActionProvider

Downloads a resource to the local product cache.

IdP Logout Action Provider
Identity Provider Logout.

Karaf Logout Action

Local Logout.

LDAP Logout Action
Ldap Logout.

Overlay ActionProvider

Provides a metacard URL that transforms the metacard into a geographically aligned image

97

(suitable for overlaying on a map).

View Metacard ActionProvider

Provides a URL to a metacard.

Metacard Transformer ActionProvider

Provides a URL to a metacard that has been transformed into a specified format.

10. Asynchronous Processing Framework

NOTE This code is experimental. While this interface is functional and tested, it may change
or be removed in a future version of the library.

The Asynchronous Processing Framework is a way to run plugins asynchronously. Generally, plugins
that take a significant amount of processing time and whose results are not immediately required are
good candidates for being asynchronously processed. A Processing Framework can either be run on
the local or remote system. Once the Processing Framework finishes processing incoming requests, it
may submit (Create|Update|Delete)Requests to the Catalog. The type of plugins that a Processing
Framework runs are the Post-Process Plugins. The Post-Process Plugins are triggered by the
Processing Post Ingest Plugin, which is a Post-Ingest Plugin. Post-Ingest Plugins are run after the
metacard has been ingested into the Catalog. This feature is uninstalled by default.

The Processing Framework does not support partial updates to the Catalog. This
means that if any changes are made to a metacard in the Catalog between the time

WARNING asynchronous processing starts and ends, those changes will be overwritten by
the ProcessingFramework updates sent back to the Catalog. This feature should
be used with caution.

98

(Create.-'UH

date/Delete)
equest &

CatalogFramework

(Create/Update/Delete)
Response

PostingestPlugin

‘ ProcessRequest{Processltem}

'

PostProcessPlugin 1

{Processltem}

PostProcessPlugin 2

{Processltem}

PostProcessPlugin N

1 (Create/Update/Delete)Request

Processing Framework Architecture

The Asynchronous Processing Framework API Interfaces
ddf.
ddf.
ddf.
ddf.

1.

© ® NGk w N

org
org
org
org

org

org.
org.
org.

org.

.codice.
.codice.
.codice.
.codice.
.codice.
codice.
codice.
codice.

codice.

ddf

catalog.async.processingframework.api.internal.ProcessingFramework

catalog.async.plugin.api.internal.PostProcessPlugin

catalog.async.data.api

catalog.async.data.api

.catalog.async.data.api
ddf.
ddf.
ddf.
ddf.

catalog.async.data.api
catalog.async.data.api
catalog.async.data.api

catalog.async.data.api

.internal.
.internal.
.internal.
.internal.
.internal.
.internal.

.internal.

ProcessItem
ProcessCreateltem
ProcessUpdateltem
ProcessDeleteltem
ProcessRequest
ProcessResoure

ProcessResourceItem

99

PostProcessPlugin

ProcessRequest{ProcessUpdateltem} process(ProcessUpdateltem)
ProcessRequest{ProcessDeleteltem} process(ProcessDeleteltem)

ProcessRequest ProcessCreateltemi process(ProcessCreateltem)

ProcessRequest{T extends Processltem}

List{T} getProcessitems()

Processltem

Metacard getMetacard()

ProcessResourceltem

ProcessResource getProcessResource()
Boolean isMetacardModified()

t

ProcessCreateltem ProcessUpdateltem ProcessDeleteltem

Metacard getOldMetacard()

Processing Framework Interface Diagram

ProcessingFramework

The ProcessingFramework is responsible for processing incoming ProcessRequests that contain a
ProcessItem. A ProcessingFramework should never block. It receives its ProcessRequests from a
PostIngestPlugin on all CUD operations to the Catalog. In order to determine whether or not
asynchronous processing is required by the ProcessingFramework, the ProcessingFramework should mark
any request it has submitted back the Catalog, otherwise a processing loop may occur. For example, the
default In-Memory Processing Framework adds a POST_PROCESS_COMPLETE flag to the Catalog CUD
request after processing. This flag is checked by the ProcessingPostIngestPlugin before a
ProcessRequest is sent to the ProcessingFramework. For an example of a ProcessingFramework, please refer
to the org.codice.ddf.catalog.async.processingframework.impl.InMemoryProcessingFramework.

ProcessRequest

A ProcessRequest contains a list of ProcessItems for the ProcessingFramework to process. Once a
ProcessRequest has been processed by a ProcessingFramework, the ProcessingFramework should mark the
ProcessRequest as already been processed, so that it does not process it again.

PostProcessPlugin

The PostProcessPlugin is a plugin that will be run by the ProcessingFramework. It is capable of processing
ProcessCreateltems, ProcessUpdateltems, and ProcessDeleteltems.

100

Processltem

WARNING Do not implement ProcessItem directly; it is intended for use only as a common
base interface for ProcessResourceltem and ProcessDeleteltem.

The ProcessItem is contained by a ProcessRequest. It can be either a ProcessCreateltem,
ProcessUpdateltem, or ProcessDeleteltem.

ProcessResource

The ProcessResource is a piece of content that is attached to a metacard. The piece of content can be
either local or remote.

ProcessResourceltem

The ProcessResourceltem indicates that the item being processed may have a ProcessResource associated
with it.

ProcessResourceltem Warning

WARNING Do not implement ProcessResourceltem directly; it is intended for use only as a
common base interface for ProcessCreateItem and ProcessUpdateltem.

ProcessCreateltem

The ProcessCreateltem is an item for a metacard that has been created in the Catalog. It contains the
created metacard and, optionally, a ProcessResource.

ProcessUpdateltem

The ProcessUpdateltem is an item for a metacard that has been updated in the Catalog. It contains the
original metacard, the updated metacard and, optionally, a ProcessResource.

ProcessDeleteltem

The ProcessDeleteltem is an item for a metacard that has been deleted in the Catalog. It contains the
deleted metacard.

11. Eventing

101

Endpoints

Operations Data

Transformers Federation Sources
Catalog Framework

Catalog

Plugins Resources

Catalog Provider

Storage Provider

Eventing Architecture

The Eventing capability of the Catalog allows endpoints (and thus external users) to create a "standing
query" and be notified when a matching metacard is created, updated, or deleted.

Notably, the Catalog allows event evaluation on both the previous value (if available) and new value of
a Metacard when an update occurs.

Eventing allows DDFs to receive events on operations (e.g. create, update, delete) based on particular
queries or actions. Once subscribed, users will receive notifications of events such as update or create
on any source.

11.1. Eventing Components
The key components of DDF Eventing include:

» Subscription
* Delivery Method

e Event Processor

12. Security Framework

The DDF Security Framework utilizes Apache Shiro as the underlying security framework. The classes
mentioned in this section will have their full package name listed, to make it easy to tell which classes
come with the core Shiro framework and which are added by DDF.

102

developing.pdf#_developing_subscriptions
developing.pdf#_delivery_method
http://shiro.apache.org/

12.1. Subject

ddf.security.Subject <extends> org.apache.shiro.subject.Subject

The Subject is the key object in the security framework. Most of the workflow and implementations
revolve around creating and using a Subject. The Subject object in DDF is a class that encapsulates all
information about the user performing the current operation. The Subject can also be used to perform
permission checks to see if the calling user has acceptable permission to perform a certain action (e.g.,
calling a service or returning a metacard). This class was made DDF-specific because the Shiro
interface cannot be added to the Query Request property map.

Table 20. Implementations of Subject:

Classname Description

ddf.security.impl.SubjectImpl Extends
org.apache.shiro.subject.support.DelegatingSubje
ct

12.1.1. Security Manager
ddf.security.service.SecurityManager

The Security Manager is a service that handles the creation of Subject objects. A proxy to this service
should be obtained by an endpoint to create a Subject and add it to the outgoing QueryRequest. The
Shiro framework relies on creating the subject by obtaining it from the current thread. Due to the
multi-threaded and stateless nature of the DDF framework, utilizing the Security Manager interface
makes retrieving Subjects easier and safer.

Table 21. Implementations of Security Managers:

Classname Description

ddf.security.service.SecurityManagerImpl This implementation of the Security Manager
handles taking in both org.apache.shiro.authc.

AuthenticationToken and
org.apache.cxf.ws.security.tokenstore.SecurityTo

ken objects.

12.1.2. Realms

DDF uses Apache Shiro & for the concept of Realms ¥ for Authentication and Authorization. Realms
are components that access security data such as such as users or permissions.

12.1.2.1. Authenticating Realms

org.apache.shiro.realm.AuthenticatingRealm

Authenticating Realms are used to authenticate an incoming Authentication Token and return
Authentication Info & on successful authentication. This Authentication Info is used by the Shiro

103

https://shiro.org
https://shiro.apache.org/realm.html
https://shiro.apache.org/static/1.2.6/apidocs/org/apache/shiro/authc/AuthenticationInfo.html

framework to put together a resulting Subject. A Subject represents the application user and contains
all available security-relevant information about that user.

Table 22. Implementations of Authenticating Realms in DDF:

Classname

org.codice.ddf.security.quest.r
ealm.GuestRealm

org.codice.ddf.security.oidc.re
alm.0idcRealm

ddf.security.realm.sts.StsRealm

12.1.2.2. Authorizing Realms

Description

This realm checks if Guest access is allowed on the incoming
Authentication Token, and if so the Guest realm returns the Guest
Authentication Info.

This realm takes in any OIDC/OAuth credentials found on the
incoming Authentication Token, and if so resolves the ID_Token
using those credentials. The ID_Token is then used to put together
the resulting Authentication Info.

This realm delegates authentication to the Secure Token Service
(STS). It creates a RequestSecurityToken message from the incoming
Authentication Token and converts a successful STS response into
Authentication Info.

org.apache.shiro.realm.AuthorizingRealm

Authorizing Realms are used to perform authorization on the current Subject. These are used when
performing both service authorization and filtering. They are passed in the AuthorizationInfo of the
Subject along with the permissions of the object wanting to be accessed. The response from these
realms is a true (if the Subject has permission to access) or false (if the Subject does not).

Table 23. Other implementations of the Security API within DDF

Classname

org.codice.ddf.platform.filter.
delegate.DelegateServletFilter

org.codice.ddf.security.filter.
websso.WebSSOFilter

org.codice.ddf.security.handler
.basic.BasicAuthenticationHandl
er

org.codice.ddf.security.handler
.pki.PKIHandler

104

Description

The DelegatingHttpFilterHandler detects any servlet filters that
have been exposed as OSGi services implementing
org.codice.ddf.platform.filter.SecurityFilter and places them in-
order in front of any servlet or web application running on the
container.

This filter is the main security filter that works with a number of
handlers to protect a variety of web contexts, each using different
authentication schemes and policies. It attaches an Authentication
Token to the request by either checking the session or calling the
configured Security Handlers.

Checks for basic authentication credentials in the http request
header. If no credentials are found, it supports the acquisition of
basic credentials on user-agent requests.

Handler for PKI based authentication. X509 chain will be extracted
from the HTTP request.

Classname

org.codice.security.idp.client.
IdpHandler

org.codice.ddf.security.handler
.0idc.0idcHandler

org.codice.ddf.security.handler
.0auth.OAuthHandler

org.codice.ddf.security.filter.
login.LoginFilter

org.codice.ddf.security.filter.
authorization.AuthorizationFilt
er

org.apache.shiro.realm.Authenti
catingRealm

ddf.security.service.AbstractAu
thorizingRealm

ddf.security.pdp.realm.AuthZRea
1m

org.codice.ddf.security.validat
or.*

Description

Handler for IdP/SAML based authentication. If no credentials are
found, it supports the acquisition of credentials through the
configured SAML IdP.

Handler for OIDC based authentication. If no credentials are found,
and is a user-agent request, this handler supports the acquisition of
credentials through the configured OIDC IdP.

Handler for OAuth based authentication. Does not support the
acquisition of credentials.

This filter runs immediately after the WebSSOFilter and exchanges
an Authentication Token found in the request with a Subject via
Shiro.

This filter runs immediately after the LoginFilter and checks any
permissions assigned to the web context against the attributes of
the Subject via Shiro.

This is an abstract authenticating realm that exchanges an
org.apache.shiro.authc.AuthenticationToken for a
org.apache.shiro.authc.AuthenticationInfo, which is used by the
Shiro framework to put together a ddf.security.Subject.

This is an abstract authorizing realm that takes care of caching and
parsing the Subject’s AuthorizingInfo and should be extended to
allow the implementing realm to focus on making the decision.

This realm performs the authorization decision and may or may
not delegate out to the external XACML processing engine. It uses
the incoming permissions to create a decision. However, it is
possible to extend this realm using the
ddf.security.policy.extension.PolicyExtension interface. This
interface allows an integrator to add additional policy information
to the PDP that can’t be covered via its generic matching policies.
This approach is often easier to configure for those that are not
familiar with XACML.

A number of validators are provided for X.509 and Username
tokens.

An update was made to the IdpHandler to pass SAML assertions through the
Authorization HTTP header. Cookies are still accepted and processed to maintain
legacy federation compatibility, but assertions are sent in the header on outbound

WARNING

requests. While a machine’s identity will still federate between versions, a user’s

identity will ONLY be federated when a DDF version 2.7.X server communicates
with a DDF version 2.8.X+ server, or between two servers whose versions are 2.8.xX

or higher.

105

12.2. Security Core

The Security Core application contains all of the necessary components that are used to perform
security operations (authentication, authorization, and auditing) required in the framework.

12.2.1. Security Core API

The Security Core API contains all of the DDF APIs that are used to perform security operations within
DDF.

12.2.1.1. Installing the Security Core API

The Security Services App installs the Security Core API by default. Do not uninstall the Security Core
API as it is integral to system function and all of the other security services depend upon it.

12.2.1.2. Configuring the Security Core API

The Security Core API has no configurable properties.

12.2.2. Security Core Implementation

The Security Core Implementation contains the reference implementations for the Security Core API
interfaces that come with the DDF distribution.

12.2.2.1. Installing the Security Core Implementation

The Security Core app installs this bundle by default. It is recommended to use this bundle as it
contains the reference implementations for many classes used within the Security Framework.

12.2.2.2. Configuring the Security Core Implementation

The Security Core Implementation has no configurable properties.

12.2.3. Security Core Commons

The Security Core Services bundle contains services that are used within DDF to help with performing
common security operations. Most notably, this bundle contains the ddf.security.audit.SecuritylLogger
class that performs the security audit logging within DDF.

12.2.3.1. Configuring the Security Core Commons

The Security Core Commons bundle has no configurable properties.

12.3. Security Encryption

The Security Encryption application offers an encryption framework and service implementation for

106

other applications to use. This service is commonly used to encrypt and decrypt default passwords that
are located within the metatype and Admin Console.

The encryption service and encryption command, which are based on tink [, provide an easy way for
developers to add encryption capabilities to DDF.

12.3.1. Security Encryption API

The Security Encryption API bundle provides the framework for the encryption service. Applications
that use the encryption service should use the interfaces defined within it instead of calling an
implementation directly.

12.3.1.1. Installing Security Encryption API

This bundle is installed by default as part of the security-encryption feature. Many applications that
come with DDF depend on this bundle and it should not be uninstalled.

12.3.1.2. Configuring the Security Encryption API

The Security Encryption API has no configurable properties.

12.3.2. Security Encryption Implementation

The Security Encryption Implementation bundle contains all of the service implementations for the
Encryption Framework and exports those implementations as services to the OSGi service registry.

12.3.2.1. Installing Security Encryption Implementation

This bundle is installed by default as part of the security-encryption feature. Other projects are
dependent on the services this bundle exports and it should not be uninstalled unless another security
service implementation is being added.

12.3.2.2. Configuring Security Encryption Implementation

The Security Encryption Implementation has no configurable properties.

12.3.3. Security Encryption Commands

The Security Encryption Commands bundle enhances the DDF system console by allowing
administrators and integrators to encrypt and decrypt values directly from the console.

The security:encrypt command allows plain text to be encrypted using AES for encryption. It uses
randomly generated keys and associated data that are created when the system is installed, and can be
found in the <DDF_HOME>/etc/keysets directory. This is useful when displaying password fields in a GUI.

Below is an example of the security:encrypt command used to encrypt the plain text
"myPasswordToEncrypt". The output, bRI9mJpDVo8bTRwqGwIFxHI5yFJzatkwjXjIlo/8USWm8=, is the encrypted

107

https://github.com/google/tink/wiki

value.

ddf@local>security:encrypt myPasswordToEncrypt

bROMIpDVo8bTRwqGWIFxHI5yFIzatKwjXjIo/8USWn8=

12.3.3.1. Installing the Security Encryption Commands

This bundle is installed by default with the security-encryption feature. This bundle is tied specifically
to the DDF console and can be uninstalled if not needed. When uninstalled, however, administrators
will not be able to encrypt and decrypt data from the console.

12.3.3.2. Configuring the Security Encryption Commands

The Security Encryption Commands have no configurable properties.

12.4. Security LDAP

The DDF LDAP application allows the user to configure either an embedded or a standalone LDAP
server. The provided features contain a default set of schemas and users loaded to help facilitate
authentication and authorization testing.

12.4.1. Embedded LDAP Server

DDF includes an embedded LDAP server (OpenD]) for testing and demonstration purposes.

The embedded LDAP server is intended for testing purposes only and is not

WARNING
recommended for production use.

12.4.1.1. Installing the Embedded LDAP Server

The embedded LDAP server is not installed by default with a standard installation.

1. Navigate to the Admin Console.

2. Select the System tab.

3. Select the Features tab.

4. Install the opendj-embedded feature.

12.4.1.2. Configuring the Embedded LDAP

Configure the Embedded LDAP from the Admin Console:

1. Navigate to the Admin Console.

108

2. Select the OpenDj Embedded application.

3. Select the Configuration tab.

Table 24. OpenD] Embedded Configurable Properties

Configurat Description
ion Name

LDAP Port Sets the port for LDAP (plaintext and startTLS). 0 will disable the port.
LDAPS Port Sets the port for LDAPS. 0 will disable the port.

Base LDIF Location on the server for a LDIF file. This file will be loaded into the LDAP and

File overwrite any existing entries. This option should be used when updating the default
groups/users with a new LDIF file for testing. The LDIF file being loaded may contain any
LDAP entries (schemas, users, groups, etc.). If the location is left blank, the default base
LDIF file will be used that comes with DDF.

12.4.1.3. Connecting to Standalone LDAP Servers

DDF instances can connect to external LDAP servers by installing and configuring the security-jaas-
1dap and security-claims-1dap features detailed here.

In order to connect to more than one LDAP server, configure these features for each LDAP server.

12.4.1.4. Embedded LDAP Configuration

The Embedded LDAP application contains an LDAP server (OpenD] version 2.6.2) that has a default set
of schemas and users loaded to help facilitate authentication and authorization testing.

Table 25. Embedded LDAP Default Ports Settings

Protocol
LDAP

LDAPS
StartTLS

Table 26. Embedded LDAP Default Users

Username Password Groups
testuser1 password

testuser? password?

nromanova password1 avengers

Lcage password1 admin, avengers
jhowlett password admin, avengers

Default Port
1389
1636
1389

Description

General test user for authentication
General test user for authentication
General test user for authentication

General test user for authentication, Admin user
for karaf

General test user for authentication, Admin user
for karaf

109

Username Password Groups Description

pparker password1 admin, avengers General test user for authentication, Admin user
for karaf

jdrew password1 admin, avengers General test user for authentication, Admin user
for karaf

tstark password1 admin, avengers General test user for authentication, Admin user
for karaf

bbanner password1 admin, avengers General test user for authentication, Admin user
for karaf

srogers password1 admin, avengers General test user for authentication, Admin user
for karaf

admin admin admin Admin user for karaf

Table 27. Embedded LDAP Default Admin User Settings

Username Password Groups Attributes Description
admin secret Administrative
User for LDAP

12.4.1.5. Schemas
The default schemas loaded into the LDAP instance are the same defaults that come with OpenD].

Table 28. Embedded LDAP Default Schemas

Schema Schema Description &

File Name

00-) This file contains a core set of attribute type and objectlass definitions from several

core.ldif standard LDAP documents, including draft-ietf-boreham-numsubordinates, draft-findlay-
ldap-groupofentries, draft-furuseth-1dap-untypedobject, draft-good-1dap-changelog,
draft-ietf-1ldup-subentry, draft-wahl-1dap-adminaddr, RFC 1274, RFC 2079, RFC 2256, RFC
2798, RFC 3045, RFC 3296, RFC 3671, RFC 3672, RFC 4512, RFC 4519, RFC 4523, RFC 4524,
RFC 4530, RFC 5020, and X.501.

0n- This file contains schema definitions from draft-behera-1dap-password-policy, which

?"%’pOU ¢y-1d gefines a mechanism for storing password policy information in an LDAP directory
server.

02- ~ This file contains the attribute type and objectclass definitions for use with the directory

config. 1dif gerver configuration.

03- This file contains schema definitions from draft-good-1dap-changelog, which defines a

(cj?]acngelog ‘1 mechanism for storing information about changes to directory server data.

03- This file contains schema definitions from RFC 2713, which defines a mechanism for

rfc2713.1di

£ storing serialized Java objects in the directory server.

110

https://backstage.forgerock.com/docs/opendj/2.6/admin-guide/#chap-schema

Schema
File Name

03-
rfc2714.1d1
f

03-
rfc2739.1di
f

03-
rfc2926.1di
f

03-
rfc3112.1di
f

03-
rfc3712.1di
f

03-
uddiv3.1ldif

04-
rfc2307bis.
1dif

05-

rfc4876.1di
f

05-
samba.ldif

05-
solaris.1di
f

06-
compat.ldif

Schema Description

This file contains schema definitions from RFC 2714, which defines a mechanism for
storing CORBA objects in the directory server.

This file contains schema definitions from RFC 2739, which defines a mechanism for
storing calendar and vCard objects in the directory server. Note that the definition in RFC
2739 contains a number of errors, and this schema file has been altered from the
standard definition in order to fix a number of those problems.

This file contains schema definitions from RFC 2926, which defines a mechanism for
mapping between Service Location Protocol (SLP) advertisements and LDAP.

This file contains schema definitions from RFC 3112, which defines the authentication
password schema.

This file contains schema definitions from RFC 3712, which defines a mechanism for
storing printer information in the directory server.

This file contains schema definitions from RFC 4403, which defines a mechanism for
storing UDDIv3 information in the directory server.
This file contains schema definitions from the draft-howard-rfc2307bis specification,

used to store naming service information in the directory server.

This file contains schema definitions from RFC 4876, which defines a schema for storing
Directory User Agent (DUA) profiles and preferences in the directory server.

This file contains schema definitions required when storing Samba user accounts in the
directory server.
This file contains schema definitions required for Solaris and OpenSolaris LDAP naming

services.

This file contains the attribute type and objectclass definitions for use with the directory
server configuration.

12.4.1.6. Starting and Stopping the Embedded LDAP

The embedded LDAP application installs a feature with the name 1dap-embedded. Installing and
uninstalling this feature will start and stop the embedded LDAP server. This will also install a fresh
instance of the server each time. If changes need to persist, stop then start the embedded-1dap-opendj
bundle (rather than installing/uninstalling the feature).

All settings, configurations, and changes made to the embedded LDAP instances are persisted across
DDF restarts. If DDF is stopped while the LDAP feature is installed and started, it will automatically
restart with the saved settings on the next DDF start.

111

https://backstage.forgerock.com/docs/opendj/2.6/admin-guide/#chap-schema

12.4.1.7. Limitations of the Embedded LDAP

Current limitations for the embedded LDAP instances include:

« Inability to store the LDAP files/storage outside of the DDF installation directory. This results in any
LDAP data (i.e., LDAP user information) being lost when the 1dap-embedded feature is uninstalled.

e Cannot be run standalone from DDF. In order to run embedded-1dap, the DDF must be started.
12.4.1.8. External Links for the Embedded LDAP

Location to the default base LDIF file in the DDF source code .

OpenD] documentation &

12.4.1.9. LDAP Administration

OpenDJ provides a number of tools for LDAP administration. Refer to the OpenD] Admin Guide .

12.4.1.10. Downloading the Admin Tools

Download OpenD]J (Version 2.6.4) (2 and the included tool suite.

12.4.1.11. Using the Admin Tools

The admin tools are located in <opendj-installation>/bat for Windows and <opendj-installation>/bin
for nix. These tools can be used to administer both local and remote LDAP servers by setting the
*host and port parameters appropriately.

In this example, the user Bruce Banner (uid=bbanner)is disabled using the manage-account
command on Windows. Run manage-account --help for usage instructions.

Example Commands for Disabling/Enabling a User’s Account

D:\OpenDJ-2.4.6\bat>manage-account set-account-is-disabled -h localhost -p 4444 -0 true
-D "cn=admin" -w secret -b "uid=bbanner,ou=users,dc=example,dc=com"
The server is using the following certificate:
Subject DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Issuer DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Validity: Wed Sep 04 15:36:46 MST 2013 through Fri Sep 04 15:36:46 MST 2015
Do you wish to trust this certificate and continue connecting to the server?
Please enter "yes" or "no":yes
Account Is Disabled: true

Notice Account Is Disabled: truein the listing:

112

https://github.com/codice/opendj-osgi/blob/master/embedded/opendj-embedded-server/src/main/resources/default-users.ldif
https://backstage.forgerock.com/docs/opendj/2.6
https://backstage.forgerock.com/docs/opendj/2.6/admin-guide/
https://backstage.forgerock.com/downloads/OpenDJ/OpenDJ%20Enterprise/2.6.4#browse

Verifying an Account is Disabled

D:\OpenDJ-2.4.6\bat>manage-account get-all -h localhost -p 4444
-b "uid=bbanner,ou=users,dc=example,dc=com"
The server is using the following certificate:

Subject DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate

Issuer DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate

Validity: Wed Sep 04 15:36:46 MST 2013 through Fri Sep 04 15:36:46 MST 2015
Do you wish to trust this certificate and continue connecting to the server?

Please enter "yes" or "no":yes

Password Policy DN: cn=Default Password Policy,cn=Password Policies,cn=config

Account Is Disabled: true
Account Expiration Time:
Seconds Until Account Expiration:

Password Changed Time: 19700101000000.0007

Password Expiration Warned Time:

Seconds Until Password Expiration:

Seconds Until Password Expiration Warning:
Authentication Failure Times:

Seconds Until Authentication Failure Unlock:

Remaining Authentication Failure Count:
Last Login Time:

Seconds Until Idle Account Lockout:
Password Is Reset: false

Seconds Until Password Reset Lockout:
Grace Login Use Times:

Remaining Grace Login Count: 0
Password Changed by Required Time:
Seconds Until Required Change Time:
Password History:

Enabling an Account

D:\OpenDJ-2.4.6\bat>manage-account clear-account-is-disabled

-h localhost -p 4444

"cn=admin" -w secret -b "uid=bbanner,ou=users,dc=example,dc=com"

The server is using the following certificate:

Subject DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate

Issuer DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate

Validity: Wed Sep 04 15:36:46 MST 2013 through Fri Sep 04 15:36:46 MST 2015
Do you wish to trust this certificate and continue connecting to the server?

Please enter "yes" or "no":yes
Account Is Disabled: false

Notice Account Is Disabled: false in the listing.

-D "cn=admin" -w secret

-D

113

Verifying an Account is Enabled

D:\OpenDJ-2.4.6\bat>manage-account get-all -h localhost -p 4444 -D "cn=admin" -w secret

-b "uid=bbanner,ou=users,dc=example,dc=com"

The server is using the following certificate:
Subject DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Issuer DN: CN=Win7-1, O=Administration Connector Self-Signed Certificate
Validity: Wed Sep 04 15:36:46 MST 2013 through Fri Sep 04 15:36:46 MST 2015

Do you wish to trust this certificate and continue connecting to the server?

Please enter "yes" or "no":yes

Password Policy DN: cn=Default Password Policy,cn=Password Policies,cn=config

Account Is Disabled: false

Account Expiration Time:

Seconds Until Account Expiration:

Password Changed Time: 19700101000000.0007

Password Expiration Warned Time:

Seconds Until Password Expiration:

Seconds Until Password Expiration Warning:

Authentication Failure Times:

Seconds Until Authentication Failure Unlock:

Remaining Authentication Failure Count:

Last Login Time:

Seconds Until Idle Account Lockout:

Password Is Reset: false

Seconds Until Password Reset Lockout:

Grace Login Use Times:

Remaining Grace Login Count: 0

Password Changed by Required Time:

Seconds Until Required Change Time:

Password History:

12.5. Security PDP

The Security Policy Decision Point (PDP) module contains services that are able to perform
authorization decisions based on configurations and policies. In the Security Framework, these
components are called realms, and they implement the org.apache.shiro.realm.Realm and
org.apache.shiro.authz.Authorizer interfaces. Although these components perform decisions on access
control, enforcement of this decision is performed by components within the notional PEP application.

12.5.1. Security PDP AuthZ Realm

The Security PDP AuthZ Realm exposes a realm service that makes decisions on authorization requests
using the attributes stored within the metacard to determine if access should be granted. This realm
can use XACML and will delegate decisions to an external processing engine if internal processing fails.
Decisions are first made based on the "match-all" and "match-one" logic. Any attributes listed in the

114

"match-all" or "match-one" sections will not be passed to the XACML processing engine and they will be
matched internally. It is recommended to list as many attributes as possible in these sections to avoid
going out to the XACML processing engine for performance reasons. If it is desired that all decisions be
passed to the XACML processing engine, remove all of the "match-all" and "match-one" configurations.
The configuration below provides the mapping between user attributes and the attributes being
asserted - one map exists for each type of mapping (each map may contain multiple values).

Match-All Mapping:: This mapping is used to guarantee that all values present in the specified
metacard attribute exist in the corresponding user attribute. Match-One Mapping:: This mapping is
used to guarantee that at least one of the values present in the specified metacard attribute exists in
the corresponding user attribute.

12.5.1.1. Configuring the Security PDP AuthZ Realm

1. Navigate to the Admin Console.
2. Select Security Application.
3. Select Configuration tab.

4. Select Security AuthZ Realm.

See Security AuthZ Realm for all possible configurations.

12.5.2. Guest Interceptor

The goal of the GuestInterceptor is to allow non-secure clients (such as SOAP requests without security
headers) to access secure service endpoints.

All requests to secure endpoints must satisfy the WS-SecurityPolicy that is included in the WSDL.

Rather than reject requests without user credentials, the guest interceptor detects the missing
credentials and inserts an assertion that represents the "guest" user. The attributes included in this
guest user assertion are configured by the administrator to represent any unknown user on the
current network.

12.5.2.1. Installing Guest Interceptor

The GuestInterceptor is installed by default with Security Application.

12.5.2.2. Configuring Guest Interceptor

Configure the Guest Interceptor from the Admin Console:
1. Navigate to the Admin Console at https://{FQDN}:{PORT}/admin
2. Select the Security application.

3. Select the Configuration tab.

4. Select the Guest Claims Configuration configuration.

115

reference.pdf#_ddf.security.pdp.realm.AuthzRealm

5. Select the + next to Attributes to add a new attribute.
6. Add any additional attributes that will apply to every user.
7. Select Save changes.

Once these configurations have been added, the GuestInterceptor is ready for use. Both secure and
non-secure requests will be accepted by all secure DDF service endpoints.

12.6. Web Service Security Architecture

The Web Service Security (WSS) functionality that comes with DDF is integrated throughout the
system. This is a central resource describing how all of the pieces work together and where they are
located within the system.

DDF comes with a Security Framework and Security Services. The Security Framework is the set of
APIs that define the integration with the DDF framework and the Security Services are the reference
implementations of those APIs built for a realistic end-to-end use case.

.
12.6.1. Securing REST
——————————— . Request Request Request Authenticating Realms
| External | —_— Aetty Web S50
I Jetty uth. Filter | -»| Guest -»> Oidc -» SAML EEN
Client +«— «— Realm Realm Realm '
——————————— Response Response
N Whitelisted? |4— ﬁ

" Endnolnt Yes | . Auth, Token
ndpoin — | - N0 | e-----o-
‘ 4, l P ! —!Web Cix |

| \Policy 1

| ¥ !Manager |

[I R it

Endpoint Basic Auth, A\
Handler Shiro
— | loop through
+ configured —»
— | handlers Login
PKI Handl Filter <+
andler

+ fommmeo- b -

L
dier ¢

(CTTTTTTTTT il

I

| Expansion |

y | Service

Fah |

Handler —» — —) '
Authz Authz
+ Filter Realm

“— — bbbt

oInc i .

.o

| E—

>
=

S
H

o
3

HIES
=

Security Architecture

The Jetty Authenticator is the topmost handler of all requests. It initializes all Security Filters and runs
them in order according to service ranking:

1. The Web SSO Filter reads from the web context policy manager and functions as the first decision
point. If the request is from a whitelisted context, no further authentication is needed and the
request skips through the rest of the security filters to the desired endpoint.

If the context is not on the whitelist, the filter will first attempt to pull authentication information off of
the session. If authentication information cannot be found on the session, the filter will then attempt to
get an authentication handler for the context. The filter loops through all configured context handlers
until one signals that it has found authentication information that it can use to build a token. This

116

configuration can be changed by modifying the web context policy manager configuration. If unable to
resolve the context, the filter will return an authentication error and the process stops. If a handler is
successfully found, an auth token is assigned and the request continues to the login filter.

1. The Login Filter receives an authentication token and returns a subject. To retrieve the subject, the
authentication token is sent through Shiro to the configured authenticating realms. The realms will
take the authentication token and attempt to return authentication info to the Shiro framework in
order to put together a subject.

2. If the Subject is returned, the request moves to the AuthZ Filter to check permissions on the user.
If the user has the correct permissions to access that web context, the request can hit the endpoint.

SAML IdP Architecture

Metadata Exchange

Web Sso SAML Client Endpoint
Filter
IdP Handler Assertion
Consumer
Logged In

Yes Service (ACS)
No
Yes Is Broswer Redirect back via POST Metadata
<4 Endpoint 4+
SAML Server

No

Start ECP

Redirect to IdP

The SAML Handler is a configured handler on the Web SSO Filter just like the other handlers in the
previous diagram. The SAML Handler and the Assertion Consumer Service are both part of the IdP
client that can be used to interface with any compliant SAML 2.0 Web SSO Identity Provider.

The Metadata Exchange happens asynchronously from any login event. The exchange can happen via
HTTP or File, or the metadata XML itself can be pasted into the configuration for the SAML client. The
metadata contains information about what bindings are accepted by the client or server and whether
or not either expects messages to be signed, etc. The redirect from the Assertion Consumer Service to
the Endpoint will cause the client to pass back through the entire filter chain, which will get caught at
the Has Session point of the WebSsoFilter. The request will proceed through the rest of the filters as any
other connection would in the previous diagram.

Unauthenticated non-browser clients that pass the HTTP headers signaling that they understand SAML
ECP can authenticate via that mechanism as explained below.

117

Service Provider (SP)

IdP Client Identity Provider (1dP)
Handler ACS
A
A
5
1 SigF?ed Response
Access In PAOS Response
Resource AuthNRequest
H In SOAP Request
6 Signed Response
Supply 2 In SOAP Response
Resource AuthNRequest
In PAOS Request
SAML ECP Aware SOAP Intermedia
Secure Client (CXF Interceptor

SAML ECP Architecture

SAML ECP can be used to authenticate a non-browser client or non-person entity (NPE). This method of
authentication is useful when there is no human in the loop, but authentication with an IdP is still
desired. The SAML Handler will send a PAOS (Reverse SOAP) request as an initial response back to the
Secure Client, assuming the client has sent the necessary HTTP headers to declare that it supports this
function. That response does not complete the request/response loop, but is instead caught by a SOAP
intermediary, which is implemented through a CXF interceptor. The PAOS response contains an
<AuthNRequest> request message, which is intended to be rerouted to a SAML IdP via SOAP. The SOAP
intermediary will then contact an IdP (selection of the IdP is not covered by the spec). The IdP will
either reject the login attempt, or issue a Signed <Response> that is to be delivered to the Assertion
Consumer Service by the intermediary. The method of logging into the IdP is not covered by the spec
and is up to the implementation. The SP is then signaled to supply the originally requested resource,
assuming the signed Response message is valid and the user has permission to view the resource.

The ambiguity in parts of the spec with regard to selecting an IdP to use and logging into that IdP can
lead to integration issues between different systems. However, this method of authentication is not
necessarily expected to work by default with anything other than other instances of DDF. It does,
however, provide a starting point that downstream projects can leverage in order to provide ECP
based authentication for their particular scenario or to connect to other systems that utilize SAML ECP.

12.7. Security PEP

The Security Policy Enforcement Point (PEP) application contains bundles that allow for policies to be
enforced at various parts of the system, for example: to reach contexts, view metacards, access catalog
operations, and others.

118

12.7.1. Security PEP Interceptor

The Security PEP Interceptor bundle contains the
ddf.security.pep.interceptor.PEPAuthorizingInterceptor class. This class uses CXF to intercept
incoming SOAP messages and enforces service authorization policies by sending the service request to
the security framework.

12.7.1.1. Installing the Security PEP Interceptor

This bundle is not installed by default but can be added by installing the security-pep-serviceauthz
feature.

To perform service authorization within a default install of DDF, this bundle

WARNIN
G MUST be installed.

12.7.1.2. Configuring the Security PEP Interceptor

The Security PEP Interceptor has no configurable properties.

12.8. Filtering

Metacard filtering is performed by the Filter Plugin after a query has been performed, but before the
results are returned to the requestor.

Each metacard result will contain security attributes that are populated by the CatalogFramework
based on the PolicyPlugins (Not provided! You must create your own plugin for your specific
metadata!) that populates this attribute. The security attribute is a HashMap containing a set of keys
that map to lists of values. The metacard is then processed by a filter plugin that creates a
KeyValueCollectionPermission from the metacard’s security attribute. This permission is then checked
against the user subject to determine if the subject has the correct claims to view that metacard. The
decision to filter the metacard eventually relies on the PDP (feature:install security-pdp-authz). The
PDP returns a decision, and the metacard will either be filtered or allowed to pass through.

The security attributes populated on the metacard are completely dependent on the type of the
metacard. Each type of metacard must have its own PolicyPlugin that reads the metadata being
returned and returns the metacard’s security attribute. If the subject permissions are missing during
filtering, all resources will be filtered.

119

developing.pdf#_filter_plugin

Example (represented as simple XML for ease of understanding):

<metacard>
<security>
<map>
<entry key="entry1" value="A,B" />
<entry key="entry2" value="X,Y" />
<entry key="entry3" value="USA,GBR" />
<entry key="entry4" value="USA,AUS" />
</map>
</security>
</metacard>

<user>
<claim name="claim1">
<value>A</value>
<value>B</value>
</claim>
<claim name="claim2">
<value>X</value>
<value>Y</value>
</claim>
<claim name="claim3">
<value>USA</value>
</claim>
<claim name="claim4">
<value>USA</value>
</claim>
</user>

In the above example, the user’s claims are represented very simply and are similar to how they would
actually appear in a SAML 2 assertion. Each of these user (or subject) claims will be converted to a
KeyValuePermission object. These permission objects will be implied against the permission object
generated from the metacard record. In this particular case, the metacard might be allowed if the
policy is configured appropriately because all of the permissions line up correctly.

To enable filtering on a new type of record, implement a PolicyPlugin that is able to read the string
metadata contained within the metacard record. Note that, in DDF, there is no default plugin that
parses a metacard. A plugin must be created to create a policy for the metacard.

12.9. Expansion Service

The Expansion Service and its corresponding expansion-related commands provide an easy way for
developers to add expansion capabilities to DDF during user attribute and metadata card processing.
In addition to these two defined uses of the expansion service, developers are free to utilize the service

120

in their own implementations.

Expansion Service Rulesets

Each instance of the expansion service consists of a collection of rulesets. Each ruleset consists of a key
value and its associated set of rules. Callers of the expansion service provide a key and a value to be
expanded. The expansion service then looks up the set of rules for the specified key. The expansion
service cumulatively applies each of the rules in the set, starting with the original value. The result is
returned to the caller.

Table 29. Expansion Service Ruleset Format

Key (Attribute) Rules (original — new)
key1 valueT replacement
value2 replacement?
value3 replacement3
key2 valueT replacement
value2 replacement?2
Included Expansions

Note that the rules listed for each key are processed in order, so they may build upon each other, i.e., a
new value from the new replacement string may be expanded by a subsequent rule. In the example
Location:Goodyear would expand to Goodyear AZ USA and Title:VP-Sales would expand to VP-Sales VP
Sales.

To use the expansion service, modify the following two files within the <DDF_HOME>/etc/pdp directory:

o <DDF_HOME>/etc/pdp/ddf-metacard-attribute-ruleset.cfg
o <DDF_HOME>/etc/pdp/ddf-user-attribute-ruleset.cfg

The examples below use the following collection of rulesets:

Table 30. Expansion Service Example Ruleset

Key (Attribute) Rules (original - new)
Location Goodyear Goodyear AZ
AZ AZ USA
CA CA USA
Title VP-Sales VP-Sales VP Sales
VP-Engineering VP-Engineering VP Engineering

It is expected that multiple instances of the expansion service will be running at the same time. Each
instance of the service defines a unique property that is useful for retrieving specific instances of the
expansion service. There are two pre-defined instances used by DDF: one for expanding user attributes
and one for metacard attributes.

121

Property Value Description
Name

mapping security.user.attribute.mapping This instance is configured with rules that expand the
user’s attribute values for security checking.

mapping security.metacard.attribute.map This instance is configured with rules that expand the
P1Ng metacard’s security attributes before comparing with
the user’s attributes.

Expansion Service Configuration Files

Additional instance of the expansion service can be configured using a configuration file. The
configuration file can have three different types of lines:

comments

any line prefixed with the # character is ignored as a comment (for readability, blank lines are also
ignored)

attribute separator

a line starting with separator= defines the attribute separator string.

rule

all other lines are assumed to be rules defined in a string format <key>:<original value>:<new
value>

The following configuration file defines the rules shown above in the example table (using the space as
a separator):

122

Sample Expansion Configuration File

This defines the separator that will be used when the expansion string contains
multiple

values - each will be separated by this string. The expanded string will be split at
the

separator string and each resulting attribute added to the attribute set (duplicates
are

suppressed). No value indicates the default value of ' ' (space).

separator=

The following rules define the attribute expansion to be performed. The rules are of
the

form:

i <attribute name>:<original value>:<expanded value>

The rules are ordered, so replacements from the first rules may be found in the
original

values of subsequent rules.

Location:Goodyear:Goodyear AZ

Location:AZ:AZ USA

Location:CA:CA USA

Title:VP-Sales:VP-Sales VP Sales

Title:VP-Engineering:VP-Engineering VP Engineering

Expansion Commands

DDF includes commands to work with the Expansion service.

Table 31. Included Expansion Commands

Title Namespace Description

DDF::Security::Expansion::C security The expansion commands provide detailed information

ommands about the expansion rules in place and the ability to see
the results of expanding specific values against the active
ruleset.

Command Description Sample Input Results

123

security:expan Runs the expansion ddf@local>security:ex [Goodyear, USA, AZ]
pand Location

service on the
Goodyear

provided data

returning the

expanded value. It ddf@local>security:ex [VP-Engineering, Engineering, VP]
takes an attribute and Ppand Title VP-

an original value, SETECAINE

expands the original

value using the ddf@local>expand [VP-Engineering, Engineering, VP,

current expansion Title "VP-Engineering Manager]

service and ruleset Manager

and dumps the results.
security:expan Displays the ruleset Expansion service [Location : Goodyear : Goodyear AZ
sions . configured: Location : AZ : AZ USA

s each actlve. Location : CA : CA USA

expansion service. ddf@local>security:ex Title : VP-Sales : VP-Sales VP Sales

pansions Title : VP-Engineering : VP-

Engineering VP Engineering]

No active expansion No expansion services currently
service: available.

ddf@local>security:ex
pansions

12.10. Federated Identity

Each instance of DDF may be configured with its own security policy that determines the resources a
user may access and the actions they may perform. To decide whether a given request is permitted,
DDF references any attributes stored internally in the requestor’s Subject. Based on these attributes
and the configured policy, DDF makes an authorization decision. See Security PDP for more
information.

This authorization process works when the requestor authenticates directly with DDF as they are
guaranteed to have a Subject. However, when federating, DDF proxies requests to federated Sources
and this poses a problem. The requestor doesn’t authenticate with federated Sources, but Sources still
need to make authorization decisions.

To solve this problem, DDF uses federated identity. When performing any federated request (query,
resource retrival, etc), DDF attaches the requestor’s SAML assertion to the outgoing request. The
federated Source extracts the assertion and validates its signature to make sure it was generated by a
trusted entity. If so, the federated Source will construct a Subject for the requestor and perform the
request using that Subject. The Source can then make authorization decisions using the process
already described.

How DDF attaches SAML assertions to federated requests depends on the endpoint used to connect to a
federated Source. When using a REST endpoint such as CSW, DDF places the assertion in the HTTP
Authorization header. When using a SOAP endpoint, it places the assertion in the SOAP security
header.

124

The figure below shows a federated query between two instances of DDF that support federated
identity.

DDF Federated Source
User Send request to
Search Catalog Framework ‘ Recreate Subject ‘
* Query +
Create HTTP request & ‘ Run query as Subject ‘
attach SAML assertion

v

Filter results - ‘ Filter results ‘
Filtered
s results s

1. A user submits a search to DDF.

2. DDF generates a catalog request, attaches the user’s Subject, and sends the request to the Catalog
Framework.

3. The Catalog Framework extracts the SAML assertion from the Subject and sends an HTTP request
to each federated Source with the assertion attached.

4. A federated Source receives this request and extracts the SAML assertion. The federated Source
then validates the authenticity of the SAML Assertion. If the assertion is valid, the federated Source
generates a Subject from the assertion to represent the user who initiated the request.

5. The federated Source filters all results that the user is not authorized to view and returns the rest to
DDF.

6. DDF takes the results from all Sources, filters those that the user is not authorized to view and
returns the remaining results to the user.

With federated identity, results are filtered both by the federated Source and client

NOTE
DDF. This is important as each may have different authorization policies.

Support for federated identity was added in DDF 2.8.x. Federated Sources older
WARNING than this will not perform any filtering. Instead, they will return all available
results and leave filtering up to the client.

125

	Federated Identity
	Table of Contents
	License
	1. Catalog Framework API
	2. Catalog API Design
	2.1. Ensuring Compatibility
	2.2. Catalog Framework Sequence Diagrams
	2.2.1. Error Handling
	2.2.2. Query
	2.2.3. Product Caching
	2.2.4. Product Download Status
	2.2.5. Catalog API
	2.2.5.1. Catalog API Search Interfaces
	2.2.5.2. Catalog Search Result Objects
	2.2.5.3. Search Programmatic Flow
	2.2.5.4. Sort Policies
	2.2.5.5. Product Retrieval
	2.2.5.6. Notifications and Activities

	2.3. Included Catalog Frameworks, Associated Components, and Configurations
	2.3.1. Standard Catalog Framework
	2.3.1.1. Installing the Standard Catalog Framework
	2.3.1.2. Configuring the Standard Catalog Framework
	2.3.1.3. Known Issues with Standard Catalog Framework

	2.3.2. Catalog Framework Camel Component
	2.3.2.1. Sending Messages to Catalog Framework Endpoint

	3. Transformers
	3.1. Available Input Transformers
	3.2. Available Metacard Transformers
	3.3. Available Query Response Transformers
	3.4. Transformers Details
	3.4.1. Atom Query Response Transformer
	3.4.1.1. Installing the Atom Query Response Transformer
	3.4.1.2. Configuring the Atom Query Response Transformer
	3.4.1.3. Using the Atom Query Response Transformer

	3.4.2. CSW Query Response Transformer
	3.4.2.1. Installing the CSW Query Response Transformer
	3.4.2.2. Configuring the CSW Query Response Transformer

	3.4.3. GeoJSON Input Transformer
	3.4.3.1. Installing the GeoJSON Input Transformer
	3.4.3.2. Configuring the GeoJSON Input Transformer
	3.4.3.3. Using the GeoJSON Input Transformer
	3.4.3.4. Conversion to a Metacard
	3.4.3.4.1. Metacard Extensibility

	3.4.3.5. Usage Limitations of the GeoJSON Input Transformer

	3.4.4. GeoJSON Metacard Transformer
	3.4.4.1. Installing the GeoJSON Metacard Transformer
	3.4.4.2. Configuring the GeoJSON Metacard Transformer
	3.4.4.3. Using the GeoJSON Metacard Transformer

	3.4.5. GeoJSON Query Response Transformer
	3.4.5.1. Installing the GeoJSON Query Response Transformer
	3.4.5.2. Configuring the GeoJSON Query Response Transformer

	3.4.6. KML Metacard Transformer
	3.4.6.1. Installing the KML Metacard Transformer
	3.4.6.2. Configuring the KML Metacard Transformer
	3.4.6.3. Using the KML Metacard Transformer

	3.4.7. KML Query Response Transformer
	3.4.7.1. Installing the KML Query Response Transformer
	3.4.7.2. Configuring the KML Query Response Transformer
	3.4.7.3. Using the KML Query Response Transformer

	3.4.8. KML Style Mapper
	3.4.8.1. Installing the KML Style Mapper
	3.4.8.2. Configuring the KML Style Mapper

	3.4.9. Metadata Metacard Transformer
	3.4.9.1. Installing the Metadata Metacard Transformer
	3.4.9.2. Configuring the Metadata Metacard Transformer
	3.4.9.3. Using the Metadata Metacard Transformer

	3.4.10. PDF Input Transformer
	3.4.10.1. Installing the PDF Input Transformer
	3.4.10.2. Configuring the PDF Input Transformer

	3.4.11. PPTX Input Transformer
	3.4.11.1. Installing the PPTX Input Transformer
	3.4.11.2. Configuring the PPTX Input Transformer

	3.4.12. Query Response Transformer Consumer
	3.4.12.1. Installing the Query Response Transformer Consumer
	3.4.12.2. Configuring the Query Response Transformer Consumer

	3.4.13. Resource Metacard Transformer
	3.4.13.1. Installing the Resource Metacard Transformer
	3.4.13.2. Configuring the Resource Metacard Transformer
	3.4.13.3. Using the Resource Metacard Transformer

	3.4.14. Thumbnail Metacard Transformer
	3.4.14.1. Installing the Thumbnail Metacard Transformer
	3.4.14.2. Configuring the Thumbnail Metacard Transformer
	3.4.14.3. Using the Thumbnail Metacard Transformer

	3.4.15. Tika Input Transformer
	3.4.15.1. Installing the Tika Input Transformer
	3.4.15.2. Configuring the Tika Input Transformer

	3.4.16. Video Input Transformer
	3.4.16.1. Installing the Video Input Transformer
	3.4.16.2. Configuring the Video Input Transformer

	3.4.17. XML Input Transformer
	3.4.17.1. Installing the XML Input Transformer
	3.4.17.2. Configuring the XML Input Transformer

	3.4.18. XML Metacard Transformer
	3.4.18.1. Installing the XML Metacard Transformer
	3.4.18.2. Configuring the XML Metacard Transformer
	3.4.18.3. Using the XML Metacard Transformer

	3.4.19. XML Query Response Transformer
	3.4.19.1. Installing the XML Query Response Transformer
	3.4.19.2. Configuring the XML Query Response Transformer
	3.4.19.3. Using the XML Query Response Transformer

	3.5. Mime Type Mapper
	3.5.1. DDF Mime Type Mapper
	3.5.1.1. Installing the DDF Mime Type Mapper
	3.5.1.2. Configuring DDF Mime Type Mapper

	3.6. Mime Type Resolver
	3.6.1. Custom Mime Type Resolver
	3.6.1.1. Installing the Custom Mime Type Resolver
	3.6.1.2. Configuring the Custom Mime Type Resolver

	3.6.2. Tika Mime Type Resolver
	3.6.2.1. Installing the Tika Mime Type Resolver
	3.6.2.2. Configuring the Tika Mime Type Resolver

	4. Catalog Plugins
	4.1. Types of Plugins
	4.1.1. Pre-Authorization Plugins
	4.1.1.1. Available Pre-Authorization Plugins

	4.1.2. Policy Plugins
	4.1.2.1. Available Policy Plugins

	4.1.3. Access Plugins
	4.1.3.1. Available Access Plugins

	4.1.4. Pre-Ingest Plugins
	4.1.4.1. Available Pre-Ingest Plugins

	4.1.5. Post-Ingest Plugins
	4.1.5.1. Available Post-Ingest Plugins

	4.1.6. Post-Process Plugins
	4.1.6.1. Available Post-Process Plugins

	4.1.7. Pre-Query Plugins
	4.1.7.1. Available Pre-Query Plugins

	4.1.8. Pre-Federated-Query Plugins
	4.1.8.1. Available Pre-Federated-Query Plugins

	4.1.9. Post-Query Plugins
	4.1.9.1. Available Post-Query Plugins

	4.1.10. Post-Federated-Query Plugins
	4.1.10.1. Available Post-Federated-Query Plugins

	4.1.11. Pre-Resource Plugins
	4.1.11.1. Available Pre-Resource Plugins

	4.1.12. Post-Resource Plugins
	4.1.12.1. Available Post-Resource Plugins

	4.1.13. Pre-Create Storage Plugins
	4.1.13.1. Available Pre-Create Storage Plugins

	4.1.14. Post-Create Storage Plugins
	4.1.14.1. Available Post-Create Storage Plugins

	4.1.15. Pre-Update Storage Plugins
	4.1.15.1. Available Pre-Update Storage Plugins

	4.1.16. Post-Update Storage Plugins
	4.1.16.1. Available Post-Update Storage Plugins

	4.1.17. Pre-Subscription Plugins
	4.1.17.1. Available Pre-Subscription Plugins

	4.1.18. Pre-Delivery Plugins
	4.1.18.1. Available Pre-Delivery Plugins

	4.2. Catalog Plugin Details
	4.2.1. Catalog Backup Plugin
	4.2.1.1. Installing the Catalog Backup Plugin
	4.2.1.2. Configuring the Catalog Backup Plugin
	4.2.1.3. Usage Limitations of the Catalog Backup Plugin

	4.2.2. Catalog Policy Plugin
	4.2.2.1. Installing the Catalog Policy Plugin
	4.2.2.2. Configuring the Catalog Policy Plugin

	4.2.3. Checksum Plugin
	4.2.3.1. Installing the Checksum Plugin
	4.2.3.2. Configuring the Checksum Plugin

	4.2.4. Client Info Plugin
	4.2.4.1. Related Components to the Client Info Plugin
	4.2.4.2. Installing the Client Info Plugin
	4.2.4.3. Configuring the Client Info Plugin

	4.2.5. Content URI Access Plugin
	4.2.5.1. Installing the Content URI Access Plugin
	4.2.5.2. Configuring the Content URI Access Plugin

	4.2.6. Event Processor
	4.2.6.1. Installing the Event Processor
	4.2.6.2. Configuring the Event Processor
	4.2.6.3. Usage Limitations of the Event Processor

	4.2.7. Expiration Date Pre-Ingest Plugin
	4.2.7.1. Installing the Expiration Date Pre-Ingest Plugin
	4.2.7.2. Configuring the Expiration Date Pre-Ingest Plugin

	4.2.8. Filter Plugin
	4.2.8.1. Installing the Filter Plugin
	4.2.8.2. Configuring the Filter Plugin

	4.2.9. GeoCoder Plugin
	4.2.9.1. Installing the GeoCoder Plugin
	4.2.9.2. Configuring the GeoCoder Plugin

	4.2.10. Historian Policy Plugin
	4.2.10.1. Installing the Historian Policy Plugin
	4.2.10.2. Configuring the Historian Policy Plugin

	4.2.11. JPEG2000 Thumbnail Converter
	4.2.11.1. Installing the JPEG2000 Thumbnail Converter
	4.2.11.2. Configuring the JPEG2000 Thumbnail Converter

	4.2.12. Metacard Attribute Security Policy Plugin
	4.2.12.1. Installing the Metacard Attribute Security Policy Plugin

	4.2.13. Metacard Backup File Storage Provider
	4.2.13.1. Installing the Metacard Backup File Storage Provider
	4.2.13.2. Configuring the Metacard Backup File Storage Provider

	4.2.14. Metacard Backup S3 Storage Provider
	4.2.14.1. Installing the Metacard S3 File Storage Provider
	4.2.14.2. Configuring the Metacard S3 File Storage Provider

	4.2.15. Metacard Groomer
	4.2.15.1. Installing the Metacard Groomer
	4.2.15.2. Configuring the Metacard Groomer

	4.2.16. Metacard Ingest Network Plugin
	4.2.16.1. Related Components to the Metacard Ingest Network Plugin
	4.2.16.2. Installing the Metacard Ingest Network Plugin
	4.2.16.3. Configuring the Metacard Ingest Network Plugin
	4.2.16.3.1. Useful Attributes

	4.2.16.4. Usage Limitations of the Metacard Ingest Network Plugin

	4.2.17. Metacard Resource Size Plugin
	4.2.17.1. Installing the Metacard Resource Size Plugin
	4.2.17.2. Configuring the Metacard Resource Size Plugin

	4.2.18. Metacard Validity Filter Plugin
	4.2.18.1. Related Components to the Metacard Validity Filter Plugin
	4.2.18.2. Installing the Metacard Validity Filter Plugin

	4.2.19. Metacard Validity Marker
	4.2.19.1. Related Components to the Metacard Validity Marker
	4.2.19.2. Installing Metacard Validity Marker
	4.2.19.3. Configuring Metacard Validity Marker
	4.2.19.4. Using Metacard Validity Marker

	4.2.20. Operation Plugin
	4.2.20.1. Installing the Operation Plugin
	4.2.20.2. Configuring the Operation Plugin

	4.2.21. Point of Contact Policy Plugin
	4.2.21.1. Related Components to Point of Contact Policy Plugin
	4.2.21.2. Installing the Point of Contact Policy Plugin
	4.2.21.3. Configuring the Point of Contact Policy Plugin

	4.2.22. Processing Post-Ingest Plugin
	4.2.22.1. Related Components to Processing Post-Ingest Plugin
	4.2.22.2. Installing the Processing Post-Ingest Plugin
	4.2.22.3. Configuring the Processing Post-Ingest Plugin

	4.2.23. Resource URI Policy Plugin
	4.2.23.1. Installing the Resource URI Policy Plugin
	4.2.23.2. Configuring the Resource URI Policy Plugin

	4.2.24. Security Audit Plugin
	4.2.24.1. Installing the Security Audit Plugin

	4.2.25. Security Logging Plugin
	4.2.25.1. Installing Security Logging Plugin
	4.2.25.2. Enhancing the Security Log

	4.2.26. Security Plugin
	4.2.26.1. Installing the Security Plugin
	4.2.26.2. Configuring the Security Plugin

	4.2.27. Tags Filter Plugin
	4.2.27.1. Related Components to Tags Filter Plugin
	4.2.27.2. Installing the Tags Filter Plugin
	4.2.27.3. Configuring the Tags Filter Plugin

	4.2.28. Video Thumbnail Plugin
	4.2.28.1. Installing the Video Thumbnail Plugin
	4.2.28.2. Configuring the Video Thumbnail Plugin

	4.2.29. Workspace Access Plugin
	4.2.29.1. Related Components to The Workspace Access Plugin
	4.2.29.2. Installing the Workspace Access Plugin
	4.2.29.3. Configuring the Workspace Access Plugin

	4.2.30. Workspace Pre-Ingest Plugin
	4.2.30.1. Related Components to The Workspace Pre-Ingest Plugin
	4.2.30.2. Installing the Workspace Pre-Ingest Plugin
	4.2.30.3. Configuring the Workspace Pre-Ingest Plugin

	4.2.31. Workspace Sharing Policy Plugin
	4.2.31.1. Related Components to The Workspace Sharing Policy Plugin
	4.2.31.2. Installing the Workspace Sharing Policy Plugin
	4.2.31.3. Configuring the Workspace Sharing Policy Plugin

	4.2.32. XML Attribute Security Policy Plugin
	4.2.32.1. Installing the XML Attribute Security Policy Plugin

	5. Data
	5.1. Metacards
	5.1.1. Metacard Type
	5.1.1.1. Default Metacard Type and Attributes
	5.1.1.2. Extensible Metacards

	5.1.2. Metacard Type Registry
	5.1.3. Attributes
	5.1.3.1. Attribute Types
	5.1.3.1.1. Attribute Format
	5.1.3.1.2. Attribute Naming Conventions

	5.1.3.2. Result

	5.1.4. Creating Metacards
	5.1.4.1. Limitations
	5.1.4.2. Processing Metacards
	5.1.4.3. Basic Types

	6. Operations
	7. Resources
	7.1. Content Item
	7.1.1. Retrieving Resources
	7.1.1.1. BinaryContent

	7.1.2. Retrieving Resource Options
	7.1.3. Storing Resources

	7.2. Resource Components
	7.3. Resource Readers
	7.3.1. URL Resource Reader
	7.3.1.1. Installing the URL Resource Reader
	7.3.1.2. Configuring Permissions for the URL Resource Reader
	7.3.1.3. Configuring the URL Resource Reader
	7.3.1.4. Using the URL Resource Reader

	7.4. Resource Writers

	8. Queries
	8.1. Filters
	8.1.1. FilterBuilder API
	8.1.1.1. Boolean Operators
	8.1.1.2. Attribute

	9. Action Framework
	9.1. Action Providers

	10. Asynchronous Processing Framework
	11. Eventing
	11.1. Eventing Components

	12. Security Framework
	12.1. Subject
	12.1.1. Security Manager
	12.1.2. Realms
	12.1.2.1. Authenticating Realms
	12.1.2.2. Authorizing Realms

	12.2. Security Core
	12.2.1. Security Core API
	12.2.1.1. Installing the Security Core API
	12.2.1.2. Configuring the Security Core API

	12.2.2. Security Core Implementation
	12.2.2.1. Installing the Security Core Implementation
	12.2.2.2. Configuring the Security Core Implementation

	12.2.3. Security Core Commons
	12.2.3.1. Configuring the Security Core Commons

	12.3. Security Encryption
	12.3.1. Security Encryption API
	12.3.1.1. Installing Security Encryption API
	12.3.1.2. Configuring the Security Encryption API

	12.3.2. Security Encryption Implementation
	12.3.2.1. Installing Security Encryption Implementation
	12.3.2.2. Configuring Security Encryption Implementation

	12.3.3. Security Encryption Commands
	12.3.3.1. Installing the Security Encryption Commands
	12.3.3.2. Configuring the Security Encryption Commands

	12.4. Security LDAP
	12.4.1. Embedded LDAP Server
	12.4.1.1. Installing the Embedded LDAP Server
	12.4.1.2. Configuring the Embedded LDAP
	12.4.1.3. Connecting to Standalone LDAP Servers
	12.4.1.4. Embedded LDAP Configuration
	12.4.1.5. Schemas
	12.4.1.6. Starting and Stopping the Embedded LDAP
	12.4.1.7. Limitations of the Embedded LDAP
	12.4.1.8. External Links for the Embedded LDAP
	12.4.1.9. LDAP Administration
	12.4.1.10. Downloading the Admin Tools
	12.4.1.11. Using the Admin Tools

	12.5. Security PDP
	12.5.1. Security PDP AuthZ Realm
	12.5.1.1. Configuring the Security PDP AuthZ Realm

	12.5.2. Guest Interceptor
	12.5.2.1. Installing Guest Interceptor
	12.5.2.2. Configuring Guest Interceptor

	12.6. Web Service Security Architecture
	12.6.1. Securing REST

	12.7. Security PEP
	12.7.1. Security PEP Interceptor
	12.7.1.1. Installing the Security PEP Interceptor
	12.7.1.2. Configuring the Security PEP Interceptor

	12.8. Filtering
	12.9. Expansion Service
	12.10. Federated Identity

